In-Station Diagnostics (ISD)

Install, Setup, & Operation Manual

For VST ECS Membrane Processors
Notice

Veeder-Root makes no warranty of any kind with regard to this publication, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Veeder-Root shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this publication.

Veeder-Root reserves the right to change system options or features, or the information contained in this publication.

This publication contains proprietary information which is protected by copyright. All rights reserved. No part of this publication may be modified or translated to another language without the prior written consent of Veeder-Root.

Contact TLS Systems Technical Support for additional troubleshooting information at 800-323-1799.

DAMAGE CLAIMS / LOST EQUIPMENT

Thoroughly examine all components and units as soon as they are received. If any cartons are damaged or missing, write a complete and detailed description of the damage or shortage on the face of the freight bill. The carrier’s agent must verify the inspection and sign the description. Refuse only the damaged product, not the entire shipment.

Veeder-Root must be notified of any damages and/or shortages within 30 days of receipt of the shipment, as stated in our Terms and Conditions.

VEEDER-ROOT’S PREFERRED CARRIER

1. Contact Veeder-Root Customer Service at 800-873-3313 with the specific part numbers and quantities that were missing or received damaged.

2. Fax signed Bill of Lading (BOL) to Veeder-Root Customer Service at 800-234-5350.

3. Veeder-Root will file the claim with the carrier and replace the damaged/missing product at no charge to the customer. Customer Service will work with production facility to have the replacement product shipped as soon as possible.

CUSTOMER’S PREFERRED CARRIER

1. It is the customer’s responsibility to file a claim with their carrier.

2. Customer may submit a replacement purchase order. Customer is responsible for all charges and freight associated with replacement order. Customer Service will work with production facility to have the replacement product shipped as soon as possible.

3. If "lost" equipment is delivered at a later date and is not needed, Veeder-Root will allow a Return to Stock without a restocking fee.

4. Veeder-Root will NOT be responsible for any compensation when a customer chooses their own carrier.

RETURN SHIPPING

For the parts return procedure, please follow the appropriate instructions in the "General Returned Goods Policy" pages in the "Policies and Literature" section of the Veeder-Root North American Environmental Products price list. Veeder-Root will not accept any return product without a Return Goods Authorization (RGA) number clearly printed on the outside of the package.

WARRANTY

Please see next page, iii.
Warranty

For ISD components (Vapor Flow Sensor, Vapor Pressure Sensor & software), the following warranty applies:

We warrant that this product shall be free from defects in material and workmanship and will comply with the performance standards of California EPA CP-201 section 10 as amended July 22, 2004 for a period of one (1) year from the date of installation or twenty-four (24) months from the date of invoice, whichever occurs first. We will repair or replace the product if the product is returned to us transportation prepaid by user, within the warranty period, and is determined by us to be defective. This warranty will not apply to any product which has been subjected to misuse, negligence, accidents, systems that are misapplied or are not installed per Veeder-Root's specifications as outlined in the ARB Approved Installation, Operation and Maintenance Manuals for the VST Phase II EVR System Including Veeder-Root ISD, modified or repaired by unauthorized persons, or damage related to acts of God. We shall not be responsible for any expenses incurred by the user.
Table of Contents

1 Introduction
- Site Requirements ... 16-1
- Supported Vapor Recovery Systems .. 16-2
- Contractor Certification Requirements 16-2
- Related Manuals .. 16-2
- Safety Precautions ... 16-3
- Example Site Diagrams ... 16-3

2 Installation
- Vapor Flow Meter .. 16-5
- Vapor Pressure Sensor ... 16-5
- Installing TLS Console Modules - General Notes 16-5
 - Circuit Directory ... 16-6
- Smart Sensor Interface Module .. 16-7
- NVMEM203 Board .. 16-7
- Site Shut Down Requirements .. 16-7
- Dispenser Interface Module (DIM) .. 16-7
- Probe Interface Module ... 16-7
- I/O Combination or 4-Relay Module 16-7
- Multiport Card for Vapor Processor Communication 16-8
- TLS Console with VST ECS Membrane Processor 16-8

3 Setup
- Introduction .. 16-9
- Alarm Setups ... 16-9
- Smart Sensor Setup .. 16-10
- EVR/ISD Setup .. 16-11
- Output Relay Setup - VST ECS Membrane Processor 16-15
- PMC Setup .. 16-16
- Alarm Setup ... 16-17
 - Introduction for Sites with Line Leak Detection 16-17
 - Alarm Setup for Sites without Line Leak Detection 16-18

4 ISD Operability Test Procedure
- Vapor Pressure Sensor Verification Test 16-22
 - Principle and Summary of Test Procedure 16-22
 - Biases and Interferences .. 16-22
 - Range and Accuracy ... 16-23
 - Equipment ... 16-23
 - Calibration Requirements .. 16-23
 - Determining UST Pressure .. 16-23
 - Determining Ambient Pressure 16-24
 - Alternate Procedures ... 16-24
- Vapor Flow Meter Operability Test 16-27
 - EQUIPMENT .. 16-27
 - PRE-TEST PROCEDURES .. 16-30
 - TEST PROCEDURES ... 16-31
 - POST-TEST PROCEDURES ... 16-32
- Site Shutdown Test ... 16-32
Table of Contents

5 Operation
Alarms ..16-33
Overview of TLS console Interface..16-33
Warning Posting ...16-33
Alarm Posting ...16-34
Site Reenable ...16-34
Alarm Logs ..16-35
Alarm Sequence ..16-36
ISD Alarm Summary ...16-36
Other Alarms ...16-38
Reports ..16-39
Viewing ISD Reports ..16-40
Viewing ISD Reports via RS-232 Connection ...16-44
Connecting Laptop to Console ...16-44
Connecting Laptop to Console ...16-45
Sending Console Commands ...16-47

6 Maintenance
TLS Console ..16-53
Air Flow Meter ..16-53
Vapor Pressure Sensor ..16-53

7 Diagnostic Menus
Smart Sensor Diagnostic Menu ...16-54
ISD Diagnostic Menu ..16-55
VST ECS Membrane Processor Diagnostic Menu16-57

Appendix A: Site EVR/ISD Equipment Location Worksheet
Single-Hose Fueling Position Dispensers ...16-58
Multi-Hose Fueling Position Dispensers ...16-61

Appendix B: ISD Operability Test Procedure Data Forms
Vapor Pressure Sensor UST Pressure Test Data Form16-66
Vapor Pressure Sensor Ambient Reference Test Data Form16-67
Operability Test Procedure Data Worksheet ..16-68
Site Shutdown Test Data Form ..16-69

Figures
Figure 16-1. Example Site Diagram - TLS Console Controlled Vapor Processor16-4
Figure 16-2. TLS console Interface Module Bays ..16-6
Figure 16-3. VST ECS Membrane Processor Connections to TLS Console16-8
Figure 16-4. Smart Sensor Setup ..16-10
Figure 16-5. Smart Sensor Setup Printout Example16-10
Figure 16-6. EVR/ISD Setup 1 ..16-11
Figure 16-7. EVR/ISD Setup 2 ..16-12
Figure 16-8. EVR/ISD Setup 3 ..16-13
Figure 16-9. Example VST ECS Printout ..16-14
Figure 16-10. Output Relay Setup for VST ECS Membrane Processor16-15
Figure 16-11: Output Relay Setup Printout Examples for TLS Console
Controlled Processor ..16-15
Figure 16-12. PMC Setup - VST ECS Membrane Processor16-16
Figure 16-13. Site Tank Control Examples ..16-17
Table of Contents

Figure 16-14. Assigning ISD Shut Down Alarms in Line Leak Disable Setup16-18
Figure 16-15. Example Line leak Disable Setup Printout16-19
Figure 16-16. Assigning ISD Shut Down Alarms in Output Relay Setup16-20
Figure 16-17. Example printout - ISD Alarms Assignments - Output Relay Setup ..16-21
Figure 16-18. Typical modified vapor adaptor dust cap (bottom view)16-25
Figure 16-19. Typical field installation of UST Pressure Measurement Assembly ...16-25
Figure 16-20. Vapor pressure sensor valve positions16-26
Figure 16-21. Accessing the vapor pressure sensor reading16-27
Figure 16-22. VST Surrogate Spout Assembly ..16-28
Figure 16-23. Vapor Flow Meter Test Assembly ..16-29
Figure 16-24. TLS console alarm interface ..16-33
Figure 16-25. Example Warning posting ...16-34
Figure 16-26. Example Alarm posting ..16-34
Figure 16-27. ISD AlarmOverride Procedure ..16-35
Figure 16-28. Printing ISD Reports on Console Printer16-40
Figure 16-29. ISD Status Report Example - TLS console printout16-41
Figure 16-30. ISD Daily Report Example - TLS console printout16-42
Figure 16-31. ISD Monthly Report Example - TLS console printout16-43
Figure 16-32. Connecting laptop to TLS console for serial communication16-44
Figure 16-33. Connection Description window ...16-45
Figure 16-34. Connect To window ...16-45
Figure 16-35. Console comm port settings prinout example16-46
Figure 16-36. HyperTerminal main window ..16-47
Figure 16-37. ISD Daily Report Details - Serial to PC Format16-49
Figure 16-38. ISD Monthly Status Report - Serial to PC Format16-50
Figure 16-39. ISD Alarm Status Report - Serial to PC Format16-51
Figure 16-40. V80 VST Vapor Processor Status Report - Serial to PC Format16-52
Figure 16-41. Priority Alarm Report - Serial to PC Format16-52
Figure 16-42. Smart Sensor Diagnostic Menu ...16-54
Figure 16-43. ISD Diagnostic Menu ...16-55
Figure 16-44. VST ECS Membrane Processor Diagnostic Menu16-57

Tables

Table 16-1. Vapor Recovery System ...16-2
Table 16-2. Related Manuals ...16-2
Table 16-3. VST ISD Alarm Summary ...16-36
Table 16-4. Other Alarms ...16-38
Table 16-5. Serial Commands for ISD Alarm, Monthly, and Daily Reports16-48
Table 16-6. Clear Test Repair Menu ..16-56
1 Introduction

In-Station Diagnostic (ISD) equipment is designed to monitor the collection and containment of vapors by vapor recovery equipment. The ISD software monitors the vapor recovery equipment using the Veeder-Root (V-R) TLS console platform, sensor inputs, and dispenser fuel events. ISD provides test reports, generates alarms following test/equipment failures, and finally, shuts down the site upon the occurrence of designated alarms.

This manual provides instructions to install, setup, and operate the special components of the Veeder-Root ISD system that are not covered in existing documentation shipped with other non-ISD specific V-R equipment (e.g., Mag probes, line leak detection, etc.). The ISD feature is an option for the TLS console platform, and as such, many of the installation/setup/operation instructions for non-ISD specific tasks (e.g., line leak detection) are covered in TLS-3XX supplied literature.

WARNING! Revision or reprogramming of the TLS may require notification of the local Certified Unified Program Agency (CUPA).

Site Requirements

Below are the requirements for all vapor recovery systems except where noted.

- A flash memory board (NVMEM203) for ISD software storage - installed on the ECPU2 board in place of the console’s 1/2 Meg RAM board - install as per TLS-350 Series Board and Software Replacement Manual, no setup required.

- A RS-232 module is required for RS-232 access to ISD reports - install as per instructions shipped with module, connect to the port using instructions in this manual.

- An output relay is required (either 4-Output Relay module, I/O Combination module) to shut down each Submersible Turbine Pump (STP) upon activation of certain ISD alarms (these alarms can also be assigned in Line Leak Disable setup to shut down the STP if Line Leak detection feature is installed) - install as per instructions shipped with module or line leak system, setup ISD shut down alarms either using output relays or line leak system following instructions in this manual. Two output relays on either of these two modules are also required for vapor processor motor control - install as per instructions in this manual.

- Dispenser Interface module (DIM) for the type of dispensers installed - install as per installation manual shipped with device, setup following instructions in DIM manual and TLS-3XX Setup Manual. Note: the DIM supplies flow meter event inputs needed for ISD analysis.

- One V-R Mag probe in each of the gasoline tanks being monitored - install as per installation manual shipped with device, setup following instructions in TLS-3XX Setup Manual.

- Smart Sensor module is required to monitor Air Flow Meters and Vapor Pressure Sensor (up to 8 devices per module, or 7 if customer is using SmartSensor module / embedded pressure). Install and connect following instructions in the Air Flow Meter and Vapor Pressure Sensor installation Guides.

- Air Flow Meters (one for each dispenser) - install as per ISD Flow Meter installation manual shipped with meter, setup following instructions in this manual. Also referred to as Vapor Flow Meters within this manual.

- Vapor Pressure Sensor (one per site) - install as per ISD Pressure Sensor installation manual shipped with sensor, setup following instructions in this manual.

- Multiport card connects to the VST-ECS membrane processor.
Supported Vapor Recovery Systems

Table 16-1 lists V-R supported vapor recovery system.

<table>
<thead>
<tr>
<th>Name</th>
<th>CARB Executive Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>VST Phase II EVR System including ISD</td>
<td>VR-204</td>
</tr>
</tbody>
</table>

Contractor Certification Requirements

Veeder-Root requires the following minimum training certifications for contractors who will install and setup the equipment discussed in this manual:

Level 1
Contractors holding valid Level 1 Certification are approved to perform wiring and conduit routing, equipment mounting, probe and sensor installation, tank and line preparation, and line leak detector installation.

Level 2/3 or 4
Contractors holding valid Level 2, 3 or 4 Certifications are approved to perform installation checkout, startup, programming and operations training, troubleshooting and servicing for all Veeder-Root Tank Monitoring Systems, including Line Leak Detection and associated accessories.

In-Station Diagnostics
This course of training includes In-Stations Diagnostics installation checkout, startup, programming, and operations training. It also includes troubleshooting and service techniques for the Veeder-Root In-Station Diagnostics system. A current level 2/3 or 4 certification is a prerequisite for the In-Station Diagnostics course. After successful completion of this course the contractor will receive a certificate as well as a Veeder-Root In-Station Diagnostics contractor certification card.

Warranty Registrations may only be submitted by selected Distributors.

Related Manuals

The manuals in Table 16-2 below are shipped with the equipment on the V-R Tech Docs CD-ROM and will be needed to install related equipment.

<table>
<thead>
<tr>
<th>V-R Manual</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLS-3XX Site Prep Manual</td>
<td>576013-879</td>
</tr>
<tr>
<td>ISD Balance Flow Meter Installation Guide</td>
<td>VST/IOM / Section 18 / VR-204</td>
</tr>
<tr>
<td>Pressure Sensor Installation Guide</td>
<td>VST/IOM / Section 17 / VR-204</td>
</tr>
<tr>
<td>TLS-3XX Series Consoles System Setup Manual</td>
<td>576013-623</td>
</tr>
<tr>
<td>TLS-3XX Series Consoles Operator's Manual</td>
<td>576013-610</td>
</tr>
<tr>
<td>Serial Comm Modules Installation Guide</td>
<td>577013-528</td>
</tr>
<tr>
<td>ISD Troubleshooting Manual</td>
<td>577013-819</td>
</tr>
<tr>
<td>TLS-350 Series Board and Software Replacement Manual</td>
<td>576013-637</td>
</tr>
<tr>
<td>TLS-350R Point-of-Sale (POS) Application Guide</td>
<td>577013-401</td>
</tr>
</tbody>
</table>
Safety Precautions

The following symbols may be used throughout this manual to alert you to important safety hazards.

<table>
<thead>
<tr>
<th>ELECTRICITY</th>
<th>TURN POWER OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>High voltage exists in, and is supplied to, the device. A potential shock hazard exists.</td>
<td>Live power to a device creates a potential shock hazard. Turn Off power to the device and associated accessories when servicing the unit.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>READ ALL RELATED MANUALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge of all related procedures before you begin work is important. Read and understand all manuals thoroughly. If you do not understand a procedure, ask someone who does.</td>
</tr>
</tbody>
</table>

WARNING

The console contains high voltages which can be lethal. It is also connected to low power devices that must be kept intrinsically safe.

Turn power Off at the circuit breaker. Do not connect the console AC power supply until all devices are installed.

Touching a live circuit can cause electrical shock that may result in serious injury or death.

Example Site Diagrams

Figure 16-1 shows an example site with a VST ECS membrane vapor processor.
Example Site Diagrams

Figure 16-1. Example Site Diagram - TLS Console Controlled Vapor Processor
2 Installation

This section discusses the installation and wiring of the hardware required to enable the TLS console to perform ISD monitoring of the site’s gasoline vapor recovery equipment (non-gas tanks are not monitored):

• Vapor Flow Meter
• Vapor Pressure Sensor
• Smart Sensor Interface Module (8 input and 7 input w/embedded pressure versions)
• NVMEM203 board - required
• 4-Relay Output Module or I/O Combination Module
• Line Leak Detection
• Dispenser Interface Module
• Probe Interface Module
• Multiport Card

All field wiring, its type, its length, etc., used for TLS console sensors must conform to the requirements outlined in the Veeder-Root TLS-3XX Site Prep manual (P/N 576013-879).

Vapor Flow Meter

Install one Vapor Flow Meter in the vapor return piping of each gasoline dispenser following the instructions in the ISD Balance Flow Meter Installation guide (VST-IOM / Section 18). Program the meter following instructions in this manual.

Vapor Pressure Sensor

Install one Vapor Pressure Sensor in the vapor return piping of the gasoline dispenser closest to the tanks following the instructions in the Pressure Sensor Installation guide (VST-IOM / Section 17). Program the meter following instructions in this manual.

Installing TLS Console Modules - General Notes

TLS consoles have three bays in which interface modules can be installed; Comm bay (left door) and Power and Intrinsically-Safe bays (right door). Smart Sensor modules are installed in the Intrinsically-Safe (I.S.) bay only (Figure 16-2).

Most consoles will be shipped with modules installed as ordered. If additional features are added at a later date, modules will be field installed.

In all cases, the position of the modules, their respective connectors and the devices wired to the connectors must be recorded to prevent improper replacement during installation or service. A circuit directory for Power and I.S. bay Interface Modules is adhered to the back of the right-hand door for this purpose.
CAUTION! During programming, module positions and the devices wired to each module are identified and stored in memory. If a connector is removed and reinstalled on a different module after programming, or if an entire module with its connector is removed and reinstalled in a different module slot, the system will not properly recognize the data being received.

Module Position
1. Record on the circuit directory the type of module in each slot location.

2. If a system contains multiple modules of a single type (i.e., two Smart Sensor Modules), they may be swapped between their respective slot locations, however, the connectors must remain with their original locations, not with the original modules.

Connector Position
1. Identify all connectors according to their slot location using the self-adhesive numbering labels furnished with each module. Accurately record on the circuit directory the location of each device wired to the connector as you attach wires to the module.

2. Once a device has been wired to certain terminals on a connector and the system has been programmed, the wires from that device may not be relocated to other terminals without reprogramming the system.

Grounding Probe and Sensor Shields
Connect probe and sensor cable shields to ground at the console only. Do not ground both ends of the shield.

CIRCUIT DIRECTORY
A circuit directory is adhered to the inside of the right-hand door. It should be filled out by the installer as the module’s connectors are being wired.

The following information should be recorded for each slot:
- Module Type: record what type of module has been installed in the slot, e.g., Smart Sensor Module.
- Position Record: record the physical location and/or type of device wired to each terminal of the module connector in the slot, e.g., AFM1.
Smart Sensor Interface Module

The Smart Sensor Interface Module 8 input or 7 input w/embedded pressure versions monitor Air Flow Meter (AFM) and Vapor Pressure Sensor (VPS) inputs.

Switch off power to the TLS console while you install modules and connect sensor wiring.

Open the right door of the console and slide the necessary Smart Sensor modules into empty I.S. Bay slots. Connect the field wiring from each of the sensors following instructions in the Air Flow Meter and Vapor Pressure Sensor manuals. Setup the Smart Sensor module(s) following instructions in this manual.

NVMEM203 Board

Verify that a NVMEM203 board is installed in the TLS console (ref. Figure 2-7 in the V-R TLS-3XX Series Consoles Troubleshooting Manual P/N 576013-818, Rev Q or later). This board contains flash EEPROM and RAM needed to run ISD software and store ISD reports. No setup is required.

Site Shut Down Requirements

Normal ISD operation requires TLS console control of the STP in each of the gasoline tanks. If the site has Wireless Pressure Line Leak Detection (WPLL LD), Pressure Line Leak Detection (PLL D) or Volumetric Line Leak Detection (VLLD) for each tank, you can use the line leak disable setup to control the vapor recovery tanks (diesel tanks do not require shutdown). If the site does not have line leak detection for all vapor recovery tanks, you can use output relay setup to control each tank. In lieu of line leak detection, install the necessary modules (output relay) to control each gasoline tank.

Dispenser Interface Module (DIM)

Verify that a dispenser interface module (DIM) is installed in the TLS console communication bay (ref. Figure 16-2) and that it is designed to communicate with the type of gasoline dispensers installed at the site. The ISD software requires dispenser fuel flow meter data inputs. Reference TLS-350R Point-of-Sale (POS) Application Guide to select correct DIM card. Refer to the manual shipped with the DIM for installation instructions, refer to the TLS-3XX System Setup manual to program the DIM.

Probe Interface Module

Verify that a Probe Interface Module(s) is installed (Intrinsically-Safe bay) and that a Mag probe is in each gasoline tank and is connected to the module(s). Program the Mag probes following instructions in the TLS-3XX System Setup manual.

I/O Combination or 4-Relay Module

Connect the vapor processor motor control relay to two relays on either the 4-Relay or I/O Combination module as shown in Figure 16-3.
Multiport Card for Vapor Processor Communication

A Multiport card is needed for RS-485 communication with the TLS console and is required with VST ECS membrane processor installations. Verify that a Multiport card is installed in slot 4 of the card cage in the communications bay of the TLS console (ref. Figure 16-3). When installing this card, refer to the V-R Serial Comm Modules Installation Guide (577013-528) for instructions. Connect this card to the vapor processor as shown in Figure 16-3. Program the card as instructed in this manual.

TLS Console with VST ECS Membrane Processor

Figure 16-3 shows the interconnection wiring between a TLS console and a VST ECS Membrane Processor.

Figure 16-3. VST ECS Membrane Processor Connections to TLS Console
3 Setup

Introduction

This section describes how to program the ISD system using the TLS console’s front panel buttons and display. The procedures in this manual follow standard TLS console setup programming input, i.e., keypad/display interaction. If necessary, refer to Section 2 of the TLS-3XX System Setup manual (P/N 576013-623) to review entering data via the front panel keypads.

All ISD-related equipment must be installed at the site and connected to the TLS console prior to beginning the setups covered in this section. As with all TLS connections, you cannot change sensor wiring or module slots after programming or the system will not recognize the correct data. Reference the section entitled “Connecting Probe/Sensor Wiring to Consoles” in the TLS-3XX Site Prep and Installation manual (P/N 576013-879) for rewiring precautions.

ALARM SETUPS

One of two TLS setups below must be performed to shut down the tank should certain ISD alarms occur:

- For ISD sites with line leak detection - XLLD Line Disable Setup (go to Figure 16-14)
 This setup assigns ISD alarms to a line leak detector that will shut down the tank’s STP.
- For ISD sites without line leak detection - Output Relay Setup (go to Figure 16-16)
 This setup assigns ISD alarms to a relay that will shut down the tank’s STP.
Smart Sensor Setup

The Smart Sensor Interface Module is installed in the Intrinsically-Safe bay of the TLS console. This module monitors Air Flow Meters and the Vapor Pressure Sensor. Figure 16-4 diagrams the Smart Sensor setup procedure. Figure 16-5 shows a printout of the Smart Sensor setup.

Figure 16-4. Smart Sensor Setup

Figure 16-5. Smart Sensor Setup Printout Example
EVR/ISD Setup

You must choose the appropriate data sheet from Appendix A for the vapor recovery system installed at your facility (e.g., Single or Multi-Hose Dispensers) and record in those sheets, all of the unique information from sensors/hose positions, prior to beginning the TLS EVR/ISD set up procedure below.

Figure 16-6 describes the first of the EVR/ISD setup programming diagrams.
Figure 16-7 describes the second of the EVR/ISD setup programming diagrams.

Figure 16-7. EVR/ISD Setup 2
Figure 16-8 describes the last of the EVR/ISD setup programming diagrams.

Pressing Enter starts a 10 minute timer for one auto map dispense.

Note: This step appears only after completing Fuel Hose Table Setup (see previous page). You must repeat this procedure for each product meter.

The system will display a fueling point number, hose number, and a hose label. If this identifies the correct hose (i.e., the one used to dispense product) press ENTER, otherwise press Tank/Sensor.

Note: This step appears only after completing Fuel Hose Table Setup (see previous page).

The system will display a fueling point number, hose number, and a hose label. If this identifies the correct hose (i.e., the one used to dispense product) press ENTER, otherwise press Tank/Sensor.

Press TANK/Sensor to scroll through fuel hose table and find desired label.

Press TANK/Sensor until the correct FP/hose/label appears in the display.

Normal display

You have dispensed from a hose that has already been mapped.

Insufficient Data. Retry?

You dispensed less than 1/2 gallon (single product minimum), or 1 gallon (blended product minimum). NOTE: if mapping dispensing equipment that uses cumulative numbers, it may require 2 dispenses from each hose/grade.

AFMx No Space for FP

You cannot map more than 2 fueling points (and related hoses) to one AFM (only one AFM is installed per dispenser).

S E S T X D A Y X T E M:
H: x FP: x Label x PRESS <ENTER>

Manual Map Grade - Hose
PRESS <ENTER>

Note: This step appears only after completing Fuel Hose Table Setup (see previous page).

The system will display a fueling point number, hose number, and a hose label. If this identifies the correct hose (i.e., the one used to dispense product) press ENTER, otherwise press Tank/Sensor.

Press TANK/Sensor to scroll through fuel hose table and find desired label.

Press TANK/Sensor to scroll through fuel hose table and find desired label.

You have dispensed from a hose that has already been mapped.

Insufficient Data. Retry?

You dispensed less than 1/2 gallon (single product minimum), or 1 gallon (blended product minimum). NOTE: if mapping dispensing equipment that uses cumulative numbers, it may require 2 dispenses from each hose/grade.

AFMx No Space for FP

You cannot map more than 2 fueling points (and related hoses) to one AFM (only one AFM is installed per dispenser).

S E S T X D A Y X T E M:
H: x FP: x Label x PRESS <ENTER>

Manual Map Grade - Hose
PRESS <ENTER>

Note: This step appears only after completing Fuel Hose Table Setup (see previous page).

The system will display a fueling point number, hose number, and a hose label. If this identifies the correct hose (i.e., the one used to dispense product) press ENTER, otherwise press Tank/Sensor.

Press TANK/Sensor to scroll through fuel hose table and find desired label.
EVR/ISD Setup

EVR Type: BALANCE
Balance Nozzle Type: VR/VST
Vapor Processor Type: VST Vapor Processor

Analysis Times
Time: 11:59 PM
Delay Minutes: 1
Accept High Orvr: DISABLED

ISD Hose Table

<table>
<thead>
<tr>
<th>ID</th>
<th>FP</th>
<th>FL</th>
<th>HL</th>
<th>AA</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>01</td>
<td>01</td>
<td>02</td>
<td>01</td>
<td>UU</td>
</tr>
<tr>
<td>02</td>
<td>02</td>
<td>02</td>
<td>02</td>
<td>01</td>
<td>UU</td>
</tr>
<tr>
<td>03</td>
<td>03</td>
<td>03</td>
<td>02</td>
<td>02</td>
<td>UU</td>
</tr>
<tr>
<td>04</td>
<td>04</td>
<td>04</td>
<td>02</td>
<td>02</td>
<td>UU</td>
</tr>
<tr>
<td>05</td>
<td>05</td>
<td>05</td>
<td>02</td>
<td>03</td>
<td>UU</td>
</tr>
<tr>
<td>06</td>
<td>06</td>
<td>06</td>
<td>02</td>
<td>03</td>
<td>UU</td>
</tr>
<tr>
<td>07</td>
<td>07</td>
<td>07</td>
<td>02</td>
<td>04</td>
<td>UU</td>
</tr>
<tr>
<td>08</td>
<td>08</td>
<td>08</td>
<td>02</td>
<td>04</td>
<td>UU</td>
</tr>
<tr>
<td>09</td>
<td>09</td>
<td>09</td>
<td>02</td>
<td>05</td>
<td>UU</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>02</td>
<td>05</td>
<td>UU</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>11</td>
<td>02</td>
<td>06</td>
<td>UU</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>12</td>
<td>02</td>
<td>06</td>
<td>UU</td>
</tr>
</tbody>
</table>

ISD Airflow Meter Map

ID Serial Num
Label

1. 03001401 AFM1 FP1 -
2. 03001402 AFM2 FP3 -
3. 03001403 AFM3 FP5 -
4. 03001404 AFM4 FP7 -
5. 03001405 AFM5 FP9 -
6. 03001406 AFM6 FP11

ISD Fuel Grade Hose Map

<table>
<thead>
<tr>
<th>FP</th>
<th>MHH</th>
<th>MHH</th>
<th>MHH</th>
<th>MHH</th>
<th>AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>101</td>
<td>301</td>
<td>901</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>02</td>
<td>102</td>
<td>302</td>
<td>902</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>03</td>
<td>103</td>
<td>303</td>
<td>903</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>04</td>
<td>104</td>
<td>304</td>
<td>904</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>05</td>
<td>105</td>
<td>305</td>
<td>905</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>06</td>
<td>106</td>
<td>306</td>
<td>906</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>07</td>
<td>107</td>
<td>307</td>
<td>907</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>08</td>
<td>108</td>
<td>308</td>
<td>908</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>09</td>
<td>109</td>
<td>309</td>
<td>909</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>10</td>
<td>110</td>
<td>310</td>
<td>910</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>11</td>
<td>111</td>
<td>311</td>
<td>911</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>12</td>
<td>112</td>
<td>312</td>
<td>912</td>
<td>U</td>
<td>U</td>
</tr>
</tbody>
</table>

Label Table

1: UNASSIGNED
2: BLEND
3: REGULAR
4: MID GRADE
5: PREMIUM
6: GOLD
7: BRONZE
8: SILVER
9: BLEND
10: BLEND4

Figure 16-9. Example VST ECS Printout
Output Relay Setup - VST ECS Membrane Processor

The Output Relay setup programs an output relay so that the TLS console can switch a controlled vapor processor on and off as shown in Figure 16-10.

Figure 16-10. Output Relay Setup for VST ECS Membrane Processor

Prints out a copy of the Output Relay Setup entries. See examples in figure below.

In our example R1 is the relay used by PMC to control the processor; R2 is the relay used to shutoff the processor when the High Product Alarm is active.

Figure 16-11. Output Relay Setup Printout Examples for TLS Console Controlled Processor

Figure 16-11 shows example setup printouts of the Output Relays setup.
PMC Setup

PMC setup allows you to select the maximum runtime and the start/stop pressure of TLS console controlled vapor processors (see Figure 16-12).

Note: the vapor processor type VST or VR Polisher must have been selected in EVR/ISD setup to access PMC setup.

Figure 16-12. PMC Setup - VST ECS Membrane Processor
INTRODUCTION

California regulations (VAPORECOVERY CERTIFICATION PROCEDURE, CP-201, DATED MAY 25, 2006 CERTIFICATION PROCEDURE FOR VAPORECOVERY SYSTEMS AT GASOLINE DISPENSING FACILITIES, Sections 9.1.2) require shut down of dispensing systems that generate specific alarm conditions. To accomplish this, the TLS must be configured to control the gasoline tank’s pump (diesel tanks are not monitored) in order to disable them when ISD shutdown alarm conditions occur. Prior to setting up ISD shut down alarms, you will need to determine how the site’s tank pumps are controlled. If the site has line leak detection, you can shut down the line (tank) by assigning the ISD alarms in Line Leak Disable setup. In the absence of line leak detection, you can assign the ISD alarms to Output Relays which in turn can be wired to shut down the tank. Figure 16-13 illustrates two examples of tank pump control, one using a line leak/output relay combination and one using output relays.

EXAMPLE 1 - Line Leak Detector controls T1 and T3, Output Relay controls T2

EXAMPLE 2 - Output Relay 1 controls T1, Output Relay 2 controls T2, etc.

Referencing the figure above, in example 1, you would assign the ISD shut down alarms for tank 1 to PLLD 1 in PLLD Line Leak Disable setup, for tank 2 to a relay in Output Relay Setup, and for tank 3 to PLLD 2 in PLLD Line Leak Disable setup. In example 2, you would assign the ISD shut down alarms for tank 1 to output relay 1, tank 2 to output relay 2, and tank 3 to output relay 3.
ALARMS SETUP FOR SITES WITH LINE LEAK DETECTION

Figure 16-14 illustrates the setup steps required to assign ISD Shut Down Alarms to a tank having a line leak detection system installed.

![Diagram](isd-ev/937-4.eps)

Figure 16-14. Assigning ISD Shut Down Alarms in Line Leak Disable Setup
Figure 16-15 shows a resulting printout of the Line Leak Disable setup with ISD alarms assigned.

![Example Line leak Disable Setup Printout](isd-evr5007-5.eps)
ALARM SETUP FOR SITES WITHOUT LINE LEAK DETECTION

Figure 16-16 illustrates the setup steps required to assign ISD Shut Down Alarms to a tank using either a Four Relay Output Module or an I/O Combination Module.

Key Legend
- M: Mode
- E: Enter
- C: Change
- S: Step
- F: Function
- P: Print

Setup Mode
Press <Function> to cont.

Output Relay Setup
Press <Step> to continue.

Relay Config - Module X
4-Relay Output module

RELAY CONFIG - MODULE X
SLOT # — X X X

RELAY CONFIG - MODULE X
SLOT # — X X

Enter Relay Designation

R1: Select Relay Type

- Standard
- Normally Closed

R1: Select Tank

TX: (Grade)

R1: Select Orientation

Relay Config - Module X
SLOT # — X X X

ISD Site Alarms: YES

- Press <Step> to continue

- See required alarms below: YES

- ISD Gross Pres Fail
- ISD Degrd Pres Fail
- ISD Vapor Leak Fail
- ISD VP Pres Fail
- ISD VP Status Fail
- ISD Setup Fail
- ISD Sensor Out Fail

Flow Col Fl
This alarm is REQUIRED by CARB to be set to YES.

IMPORTANT! Failure to set this alarm to YES will result in an ISD Setup Self-Test Alarm.

If necessary, you need to repeat the ISD SITE/HOSE Shutdown Alarm setups for each of the remaining tanks.

Figure 16-16. Assigning ISD Shut Down Alarms in Output Relay Setup
Figure 16-17 shows a resulting printout of the Output Relay setup with ISD alarms assigned.

![OUTPUT RELAY SETUP](isd-evr/937-7.eps)

Figure 16-17. Example printout - ISD Alarms Assignments - Output Relay Setup
4 ISD Operability Test Procedure

The following procedures shall be used at field sites to determine the operability of the Veeder-Root ISD system to satisfy the requirements documented in VAPOR RECOVERY CERTIFICATION PROCEDURE, CP-201, DATED MAY 25, 2006 CERTIFICATION PROCEDURE FOR VAPOR RECOVERY SYSTEMS AT GASOLINE DISPENSING FACILITIES. Testing the ISD equipment in accordance with this procedure will verify the equipment's operability for Vapor Containment Monitoring and Vapor Collection Monitoring.

Veeder-Root's TLS console ISD System Self-Test Monitoring algorithms are designed to verify proper selection, setup and operation of the TLS console modules and sensors and will not complete and report passing test results in the event of a failure of components used in the system. Completed ISD monitoring tests are evidence that:

- The system was properly powered for data collection
- All necessary ISD sensors were setup and connected
- All necessary ISD sensors were operating within specification
- All internal components including TLS console modules were properly setup and operating within specification

Veeder-Root recommends printing a copy of the ISD ALARM STATUS and ISD DAIL Y report (REF. Section 5, Operation of the ISD Install, Setup & Operation Manual) periodically to determine that compliance tests are being completed in accordance with local and state regulations.

A step-by-step worksheet for recording data from the following operability tests is provided in Appendix B.

Vapor Pressure Sensor Verification Test

PRINCIPLE AND SUMMARY OF TEST PROCEDURE

Determining UST Pressure

The pressure of the USTs is determined at the Phase I vapor recovery adaptor (dry break assembly) with a vapor coupler test assembly as shown in Figures 2 and 3 of TP-201.3 (Determination of 2 Inch WC Static Pressure Performance of Vapor Recovery Systems of Dispensing Facilities) or a modified dust cap test assembly as shown in Figure 16-18 and Figure 16-19. The test assembly is equipped with a center probe, which opens the dry break, and a quick connect fitting that is connected to an electronic pressure measuring device or digital manometer. The test assembly should open the dry break with minimal venting of the USTs. This test can be performed while product is being dispensed into motor vehicles.

Determining Ambient Pressure

The Vapor Pressure Sensor is subjected to ambient pressure by turning the Vapor Pressure Sensor valve, which is located in the dispenser closest to the tanks, to the Atmospheric Valve Position as shown in Figure 16-20. This test can be performed while product is being dispensed into motor vehicles.

BIASES AND INTERFERENCES

1. This test shall not be conducted within 30 minutes following gasoline transfer from a cargo tank.
2. This test shall not be conducted if the processor is operating (audible indication that the processor is running).
RANGE AND ACCURACY

Electronic Pressure Measuring Device such as a digital manometer

Minimum readability shall be 0.01 inches WC with measurement range(s) to include at least up to positive and negative ten (±10) inches WC with a minimum accuracy of plus or minus 0.05 inches WC of full scale.

EQUIPMENT

1. The dust cap test assembly shall be modified in the following manner:
 a. Install a probe in the center of the dust cap as shown in Figure 16-18 (one method is to tap and thread probe). The probe shall be of sufficient length to open approximately ½ inch of the dry break while allowing the cap to maintain a leak tight seal on the adaptor.
 b. Install female quick connect fitting on the top of the dust cap, offset from the center probe as shown in Figure 16-18. A Swagelok, part number SS-QC4-B-4-PM, quick connect fitting or equivalent can be used.
 c. Use “Tygon tubing” or equivalent to connect the manometer to the dust cap (Figure 16-19). Install a male quick connect fitting (Swagelok part number SS QC4-5-400 or equivalent can be used) on one end of a ferrule stainless steel tube (or equivalent material). Connect one end of the “Tygon tubing” to the stainless steel tube and connect the other end to the digital manometer (Figure 16-19).

2. Alternatively, the vapor coupler test assembly, Figures 2 and 3 of TP 201.3 may be used in lieu of the dust cap test assembly.

3. Digital Manometer (Electronic Pressure Measuring Device)

 Use a minimum range ±10.00 inches WC digital manometer to monitor the UST pressure with a minimum readability of 0.01 inches of WC. Dwyer Series 475 Mark III Digital manometer or equivalent can be used. A copy of the manufacturer’s operating instructions shall be kept with the equipment.

CALIBRATION REQUIREMENTS

1. A copy of the most current calibration of the electronic pressure measuring device shall be kept with the equipment.

2. All electronic pressure measuring devices shall be bench tested for accuracy using a reference gauge, incline manometer or National Institute of Standards and Technology (NIST) traceable standard at least once every twelve (12) consecutive months. Accuracy checks shall be performed at a minimum of five (5) points (e.g., 10, 25, 50, 75 and 90 percent of full scale) each for both positive and negative pressure readings. Accuracy shall meet the requirements in the Range and Accuracy section above.

DETERMINING UST PRESSURE

Pre-Test Procedure

1. Turn on digital manometer and allow instrument to warm up for five minutes.

2. Zero out digital manometer using adjustment pod on top of instrument in accordance with manufacturer’s instructions. Drift may be minimized by re zeroing immediately after use by venting both pressure ports to atmosphere and adjusting the knob until the display reads exactly zero.

3. Attach the male quick connect fitting to the female quick connect fitting on the modified vapor dust cap.

4. Attach digital manometer to open end of Tygon tubing.
Test Procedure
1. Attach the dust cap or vapor coupler test assembly to the vapor adaptor (Figure 16-19).
2. On the TLS Console front panel, use the 'mode key' to scroll to “DIAG MODE” then use the function and step keys, as shown in Figure 16-21 to view the current pressure value.
3. Simultaneously record the ullage pressure from the digital manometer (connected to the vapor coupler test assembly) and the TLS Console. Record the above information on Appendix B, Form 1 “Data Form for Vapor Pressure Sensor UST Pressure Test.” Districts may require the use of an alternate form, provided it includes the same minimum parameters as identified in the Data Form.
4. Verify that the pressure reading from the TLS Console is within ±0.2 inches WC from the digital manometer reading. If difference is not within ±0.2 inches WC, the pressure sensor is not in compliance with the pressure sensor requirements.
5. Press the <MODE> key to leave the ‘PMC DIAGNOSTIC’ menu.

DETERMINING AMBIENT PRESSURE
Test Procedure for Testing Sensor Under Ambient Pressure
1. Access the Vapor Pressure Sensor, which is located in the dispenser closest to the tanks. Record which dispenser contains the pressure sensor and the pressure sensor serial number on the data form.
2. Remove the cap from the ambient reference port of the Vapor Pressure Sensor valve and open the valve to atmosphere by turning it 90 degrees so that the flow arrows point to both the Vapor Pressure Sensor sensing port and the ambient reference port (see Figure 16-20).
3. On the TLS Console front panel, use the 'mode key' to scroll to “DIAG MODE” then use the function and step keys, as shown in Figure 16-21 to view the current pressure value.
4. Verify that the pressure value is between +0.2 and -0.2 inches WC. If the pressure value is not within this range, the pressure sensor is not in compliance with the pressure sensor requirements.
5. Replace the cap on the ambient reference port of the Vapor Pressure Sensor valve. Restore the Vapor Pressure Sensor valve by turning it 90 degrees so that the flow arrows point to both the Vapor Pressure Sensor sensing port and the UST vapor space sensing line (ref. Figure 16-20).
6. Press the <MODE> key to leave the ‘PMC DIAGNOSTIC’ menu.
7. Record the above information on Appendix B, Form 2 “Data Form for Vapor Pressure Sensor Ambient Reference Test.” Districts may require the use of an alternate form, provided it includes the same minimum parameters as identified in the Data Form.

ALTERNATE PROCEDURES
This procedure shall be conducted as specified. Any modifications to this test procedure shall not be used unless prior written approval has been obtained from the ARB Executive Officer, pursuant to Section 14 of CP-201.
Figure 16-18. Typical modified vapor adaptor dust cap (bottom view)

Figure 16-19. Typical field installation of UST Pressure Measurement Assembly
4 ISD Operability Test Procedure

Vapor Pressure Sensor Verification Test

Figure 16-20. Vapor pressure sensor valve positions
Vapor Flow Meter Operability Test

This procedure is used to verify the setup and operation of the Vapor Flow Meter (VFM).

EQUIPMENT

Nitrogen High Pressure Cylinder with Pressure Regulator. Use a high pressure nitrogen cylinder capable of maintaining a pressure of at least 2000 pounds per square inch gauge (psig) and equipped with a compatible two-stage pressure regulator and a one psig relief valve. A ground strap is recommended during introduction of nitrogen into the system.

Flow meter. Use a flow meter (Rotometer) capable of accurately measuring nitrogen flow rate of 60 cubic feet per hour (cfh).

Pressure Measuring Device. An electronic pressure measuring device with a full range that shall not exceed 0-10 inches of water column (WC) with a minimum accuracy of 0.5 percent of full-scale. A 0-20 inches WC device may be used provided the minimum accuracy is 0.25 percent of full-scale.

Squeeze Bulb. A rubberized or equivalent device used to increase pressure to 5.00" WC.

Balance Nozzle Adapter (P/N 2509-001). Provided by VST.

Surrogate Spout. Only the VST Surrogate Spout Assembly, Part No. 2510-001, can be used to conduct the pre-test leak check. Figure 16-22 shows the VST Surrogate Spout Assembly.

Adapter Supply Hose. The nominal inside diameter of the flexible hose shall be between 0.75 and 1.00 inches, and the length of the tubing shall be between 3 feet and 6 feet.

Ball Valve. The nominal inside diameter of the ball valve shall be 0.25".

Nitrogen Supply Line. The nominal inside diameter of the flexible tubing shall be between 0.25" and 0.375".

Gas Volume Meter. Use a Dresser Measurement Roots Meter®, or equivalent (preferably fitted with a digital readout), to measure the volumetric flow rate through the Balance Nozzle Adapter. The gas volume meter shall be calibrated within 180 days prior to conducting this procedure.

Stopwatch. Use a stopwatch accurate to within 0.2 seconds.
Lubricant. Appropriate lubricant, either grease or spray lubricant, shall be used to ensure a tight seal on the interface of the nozzle and the Balance Nozzle Adapter.

Leak Detection Solution. Any liquid solution designed to detect gaseous leaks may be used to verify the pressure integrity of test equipment during this test.

Notebook personal computer (PC) with ISD PC Setup Tool Version 1.03 or later. Serial communication cables are required to connect to the ISD system.
Figure 16-23. Vapor Flow Meter Test Assembly
PRE-TEST PROCEDURES

1. From the TLS, ISD Setup Menu print the ISD Setup Report. The ISD Hose Table will identify which VFM (column AA) is being used on each Fueling Position (FL).

<table>
<thead>
<tr>
<th>ISD HOSE TABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>01</td>
</tr>
<tr>
<td>02</td>
</tr>
<tr>
<td>03</td>
</tr>
<tr>
<td>04</td>
</tr>
<tr>
<td>05</td>
</tr>
<tr>
<td>06</td>
</tr>
<tr>
<td>07</td>
</tr>
<tr>
<td>08</td>
</tr>
<tr>
<td>09</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ISD AIRFLOW METER MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

2. Connect the notebook PC running Veeder-Root’s “ISD PC Setup Tool” terminal mode, v1.03 or higher, or use Microsoft HyperTerminal to the dedicated TLS serial port that is required for ISD reports access. Access the individual airflow meter totals for the airflow meter being tested using the following RS232 command: IV8700.

 Typical IV8700 Report

 DEC 14, 2007 5:47 AM
 AIR FLOW METER TOTALS
 DATE-TIME VOLUME
 AFM 1 AFM 2 AFM 3 AFM 4
 07-12-14 05:46:00 76739.892 63139.977 42860.023 44139.693

3. Conduct a pre-test leak check of the Balance Nozzle Adapter, the gas volume meter and the adapter supply hose by connecting the Balance Nozzle Adapter to a surrogate spout as shown in Figure 16-22. Turn the ball valve in the Figure 16-22 to the closed position. Raise the test pressure to 5.00” ±0.50” WC using a squeeze bulb. There shall not be a pressure drop of more than 1.00” WC from the above starting pressure for 30 seconds from the start of the test. If the leak test passes, proceed with the testing. If the leak test fails, proceed to isolate the source of the leak by pressurizing the test equipment again. Squirt liquid leak detector solution on interfaces and other potential leak sources and watch for the formation of bubbles. Once leak(s) are repaired, repeat the leak test procedure.

 Note: Leak checks shall be conducted in a shaded area or away from direct sunlight. Leak checks may be conducted during the testing to ensure leak integrity of test equipment.
4. Assemble the equipment as shown in Figure 16-23, Vapor Flow Meter Test Assembly. Leave the Balanced Nozzle Adaptor off of the nozzle at this time. Do not enable the dispenser to dispense product. Remove nozzle and utilize any method to keep the nozzle hook in the off position.

5. Ensure that the ground strap is properly connected to an acceptable ground.
 Note: The test requires that the nozzle be squeezed and liquid product must not flow from the dispenser.

TEST PROCEDURES

1. Prevent dispensing from all other fueling positions that use the VFM being tested.
2. Record the VFM serial number and fueling position being tested on the worksheet.
3. Completely drain any gasoline that may be in the nozzle and hose vapor return path by any acceptable method.
4. Continuing from Step 4 in the Pre-Test Procedures above, turn the ball valve to the open position and, adjust the nitrogen flow using the Rotometer to 60 cfh +/- 5.0 cfh.
5. Once the nitrogen flow is set, turn the ball valve to the closed position to stop the flow of nitrogen through the gas volume meter. This will ensure the nitrogen flow rate is set and the nitrogen can instantaneously be activated when the ball valve is turned to the open position.
6. Apply appropriate lubricant on the surface area in the Balance Nozzle Adapter. Lubricant can also be applied to the nozzle spout and the face seal (rubber boot) of the nozzle and the back of the Balance Nozzle Adapter if necessary.
7. Wait for two minutes of no air or liquid flow activity on the dispenser with the airflow meter being tested.
8. With the notebook PC connected to the TLS ISD, and the IV8700 Report page open, record the initial meter total for the VFM being tested on the worksheet.
9. Record the initial gas volume meter reading on the worksheet.
10. Ensure the dispenser is not enabled to dispense product. Simultaneously squeeze the nozzle handle to the full dispensing position and turn the ball valve to the open position to allow nitrogen to flow.
 Note: If the nozzle handle is not engaging the vapor/product valve within the nozzle, turn off the nitrogen flow using the ball valve; remove the Balance Nozzle Adapter from the nozzle to release the nitrogen pressure build up and repeat Steps 7 through 10. Excess pressure build up in the nozzle will engage the automatic shut-off diaphragm and not allow the vapor/product valve within the nozzle to open.
11. Monitor the gas volume meter display. Simultaneously stop the flow once 1.0 cubic feet (cf) +/- 0.10 cf of nitrogen is reached by turning the ball valve to the closed position and also releasing the nozzle handle.
 Note: Final volume values may be biased if the ball valve and the nozzle handle are not activated at the same time.
12. Record the end meter reading from the gas volume meter. Calculate the total cubic feet value by subtracting the initial meter reading obtained in Step 9 from the final meter reading in this step.
13. Convert the total cubic feet value to gallons using the equation on worksheet. Record the final gallon value on the worksheet.
14. Wait two minutes after each test run before obtaining the VFM reading from the notebook PC that is connected to the TLS ISD. A period of two minutes is required by the ISD system to receive and document total flow from the VFM.
15. Calculate the total VFM volume by subtracting the initial reading on Step 8 from the final reading on Step 14 and record the value on the worksheet.

16. Calculate the percent difference between the final gallons reading from the gas volume meter and the final VFM reading using the equation shown on the worksheet.

 Pass: If the volume percent difference between recorded ISD VFM and the gas volume meter is within 15%, check “Pass” on the worksheet, and repeat the Test Procedures for the next dispenser.

 Fail: If the volume percent difference between recorded ISD VFM and the gas volume meter is not within 15%, then go to Step 17.

17. Repeat Test Procedures using the opposite side of the dispenser. If test passes, continue to the next dispenser. If test fails, go to Step 18.

18. Conduct the leak test in Step 3 (of Pre-Test Procedures above) to evaluate the test equipment. If the equipment leak test passes go to Step 19. If the test fails, repair the leak and go to Step 17.

19. Replace the ISD flow meter and note the new vapor flow meter serial number on the form. Perform a Clear Test After Repair to reset tests for that dispenser, (see Section 7 of the ISD Install, Setup & Operation Manual, ISD/PMC Diagnostic Menus), at the TLS for both fueling positions on that dispenser.

20. After replacing the vapor flow meter repeat the Balance Vapor Flow Meter Operability Test.

POST-TEST PROCEDURES

1. Remove the Balance Nozzle Adapter and all equipment from the nozzle assembly.

2. A post-leak test of the equipment is not required if all the VFM’s are within range. For the VFM’s that are not within range, Steps 17 through 20 (of Test Procedures above) must be conducted. The leak test in Step 3 (of Pre-Test Procedures above) will be conducted to further evaluate the test equipment.

3. Prior to transportation, the inlet and outlet of the gas volume meter shall be carefully sealed to prevent foreign matter from entering the meter.

Site Shutdown Test

1. This test must be performed by a certified Veeder-Root contractor.

2. Remove power from TLS console.

3. Confirm power to submersible pumps is off by verifying that gasoline dispensing has been disabled.

4. Restore power to TLS console.

5. Complete Site Shutdown Worksheet
5 Operation

Alarms

OVERVIEW OF TLS CONSOLE INTERFACE

The TLS console is continuously monitoring the vapor recovery system, PMC and ISD sensors for alarm conditions such as excessively high or low vapor collection, containment system vapor leakage and equipment problems.

During normal operation when the TLS console and monitored EVR/ISD System is functioning properly and no alarm conditions exist, the "ALL FUNCTIONS NORMAL" message will appear in the system status (bottom) line of the console display, and the green Power light will be On (see Figure 16-24).

Figure 16-24. TLS console alarm interface

If an alarm condition occurs the system displays the condition type and its location. If more than one condition exists, the display will continuously cycle through the appropriate alarm messages. The system automatically prints an alarm report showing the alarm type, its location and the date and time the alarm condition occurred.

Warning and alarm posting causes the TLS console-based system to activate warning or failure indicator lights, an audible alarm, and an automatic strip paper printout documenting the warning or alarm. Historical reports of warning and alarm events are available for up to one year.

WARNING POSTING

Displayed messages alert you to the source and type of alarm. Printed messages show the type and location of the alarm. In the Warning example in Figure 16-25, the display’s second line and printed message indicates that the containment system’s vapor leak rate has increased above the allowed standard generating a warning.
The TLS console also logs an entry to the Warning Log upon posting a warning.

ALARM POSTING

Displayed messages alert you to the source/number and type of alarm. Printed messages show the type and location of the alarm. In the alarm example in Figure 16-26 the display's second line and printed message indicates that vapor collection on hose 1, FP1 Super has dropped below the allowed standard resulting in a failure alarm. (By default, for unihose dispensers, FP1 BLEND3 will be displayed rather than FP1SUPER as shown below.)

Upon posting a failure alarm, the TLS console logs an entry to the Failure Log, prohibits fuel dispensing from all ISD gasoline fueling point(s) and logs a shutdown event to the Shutdown & Misc. Event Log.

The initial release of ISD will prohibit fuel dispensing from all gasoline fueling points by shutting down the submersible pumps in all gasoline tanks. The method of overriding an ISD Alarm shutdown is discussed in the “Site Reenable” section.

SITE REENABLE

The TLS console ALARM/TEST button allows you to perform a logged shutdown override and resume dispensing. Figure 16-27 illustrates the ISD alarm override procedure.
ALARMS

Alarms will be recorded in the Warning Log or Failure Log of the monthly reports, which can be viewed electronically or via the integral printer (if queued in the most recent 10 events). The following example shows an excerpt from an electronically accessed monthly report.

Monthly Report Warning & Failure Log Examples:

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Description</th>
<th>Reading</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>08-03-15</td>
<td>00:01:26</td>
<td>FLOW PERFORMANCE HOSE BLOCKAGE</td>
<td>FP12 BLEND4</td>
<td>BLKD</td>
</tr>
<tr>
<td>08-02-17</td>
<td>00:00:49</td>
<td>FLOW PERFORMANCE HOSE BLOCKAGE</td>
<td>FP1 BLEND4</td>
<td>0.59</td>
</tr>
<tr>
<td>08-02-01</td>
<td>00:01:07</td>
<td>VAPOR CONTAINMENT LEAKAGE</td>
<td>CFH@2 INCHES WC</td>
<td>22.39</td>
</tr>
</tbody>
</table>

Failure Alarms:

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Description</th>
<th>Reading</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>08-03-14</td>
<td>00:01:26</td>
<td>FLOW PERFORMANCE HOSE BLOCKAGE</td>
<td>FP12 BLEND4</td>
<td>BLKD</td>
</tr>
<tr>
<td>08-02-13</td>
<td>00:01:45</td>
<td>VAPOR CONTAINMENT LEAKAGE</td>
<td>CFH@2 INCHES WC</td>
<td>36.56</td>
</tr>
<tr>
<td>08-02-12</td>
<td>00:01:46</td>
<td>VAPOR CONTAINMENT LEAKAGE</td>
<td>CFH@2 INCHES WC</td>
<td>37.74</td>
</tr>
<tr>
<td>08-02-11</td>
<td>00:01:57</td>
<td>VAPOR CONTAINMENT LEAKAGE</td>
<td>CFH@2 INCHES WC</td>
<td>30.10</td>
</tr>
</tbody>
</table>
ALARM SEQUENCE

Each ISD monitoring test operates once each day on sensor data gathered over a fixed time interval and with a minimum required number of monitored events. The interval is a fixed number of calendar days depending on the test being run. As an example, the ISD Gross Pressure Containment Monitoring test requires seven calendar days of data. In this example, each daily test result represents a test based on the prior seven days' time period. When a test first fails, a warning is posted and a warning event is logged. If this condition persists for seven more consecutive days, an alarm is posted, a failure alarm event is logged and the site is shutdown. If the condition continues, additional failure events are logged and the site will continue to be shutdown each day.

ISD ALARM SUMMARY

Table 16-3 summarizes the ISD Alarms - Alarms with a superscript 2 will result in a site shutdown.

<table>
<thead>
<tr>
<th>Displayed Message</th>
<th>ISD Monitoring Category</th>
<th>Indicator Light</th>
<th>Cause</th>
<th>Suggested Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISD VAPOR LEAKAGE WARN</td>
<td>Containment</td>
<td>Yellow</td>
<td>Containment system leaks at 2 times the TP-201.3 standard</td>
<td>• Troubleshooting Guide found at www.vsthose.com.</td>
</tr>
<tr>
<td>ISD VAPOR LEAKAGE FAIL²</td>
<td>Containment</td>
<td>Red</td>
<td>8th Consecutive Failure of Pressure Integrity (Vapor Leak) Test</td>
<td>• Exhibit 4</td>
</tr>
<tr>
<td>ISD GROSS PRESSURE WARN</td>
<td>Containment</td>
<td>Yellow</td>
<td>95th percentile of 7-days’ ullage pressure exceeds 1.3 IWC</td>
<td>• Troubleshooting Guide found at www.vsthose.com.</td>
</tr>
<tr>
<td>ISD GROSS PRESSURE FAIL²</td>
<td>Containment</td>
<td>Red</td>
<td>8th Consecutive Failure of Gross Containment Pressure Test</td>
<td>• Exhibit 8</td>
</tr>
<tr>
<td>ISD DEGRD PRESSURE WARN</td>
<td>Containment</td>
<td>Yellow</td>
<td>75th percentile of 30-days’ ullage pressure exceeds 0.3 IWC</td>
<td></td>
</tr>
<tr>
<td>ISD DEGRD PRESSURE FAIL²</td>
<td>Containment</td>
<td>Red</td>
<td>31st Consecutive Failure of Degradation Pressure Test</td>
<td></td>
</tr>
<tr>
<td>hnn: FLOW COLLECT WARN</td>
<td>Collection</td>
<td>Yellow</td>
<td>Vapor collection flow performance is less than 50%</td>
<td>• Troubleshooting Guide found at www.vsthose.com.</td>
</tr>
<tr>
<td>hnn: FLOW COLLECT FAIL²</td>
<td>Collection</td>
<td>Red</td>
<td>2nd Consecutive Failure of Vapor Collection Flow Performance Monitoring Test</td>
<td>• Exhibit 11</td>
</tr>
<tr>
<td>ISD VP STATUS WARN</td>
<td>Processor</td>
<td>Yellow</td>
<td>Failure of Vapor Processor Effluent Emissions or Duty Cycle test</td>
<td>• Troubleshooting Guide found at www.vsthose.com.</td>
</tr>
<tr>
<td>ISD VP STATUS FAIL²</td>
<td>Processor</td>
<td>Red</td>
<td>2nd Consecutive Failure of Vapor Processor Status test</td>
<td>• VP Emission Test</td>
</tr>
</tbody>
</table>
Table 16-3.- VST ISD Alarm Summary

<table>
<thead>
<tr>
<th>Displayed Message</th>
<th>ISD Monitoring Category</th>
<th>Indicator Light</th>
<th>Cause</th>
<th>Suggested Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISD VP PRESSURE WARN</td>
<td>Processor</td>
<td>Yellow</td>
<td>90th percentile of 1 day ullage pressure exceeds 1 IWC</td>
<td>• Troubleshooting Guide found at www.vsthose.com.</td>
</tr>
</tbody>
</table>
| ISD VP PRESSURE FAIL² | Processor | Red | 2nd Consecutive Failure of Vapor Processor Overpressure Test | • Exhibit 8
• Exhibit 9
• VST ASC Level C |
| VP EMISSION WARN³ | Processor | Yellow | Mass emission exceeded the certified threshold | • Troubleshooting Guide found at www.vsthose.com. |
| VP EMISSION FAIL | Processor | Red | 2nd Consecutive Mass emission test failure | • Exhibit 6
• Exhibit 9
• VST ASC Level C |
| VP DUTY CYCLE WARN³ | Processor | Yellow | Duty cycle exceeds 18 hours per day 0r 75% of 24 hours | • Troubleshooting Guide found at www.vsthose.com.
• PMC Setup Procedure
• Exhibit 8
• Exhibit 9
• Exhibit 4
• VST ASC Level C |
| VP DUTY CYCLE FAIL | Processor | Red | 2nd Consecutive Duty Cycle Test Failure | |
Table 16-3.- VST ISD Alarm Summary

<table>
<thead>
<tr>
<th>Displayed Message</th>
<th>ISD Monitoring Category</th>
<th>Indicator Light</th>
<th>Cause</th>
<th>Suggested Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISD SENSOR OUT WARN</td>
<td>Self-Test</td>
<td>Yellow</td>
<td>Failure of Sensor Self-Test</td>
<td></td>
</tr>
<tr>
<td>ISD SENSOR OUT FAIL</td>
<td>Self-Test</td>
<td>Red</td>
<td>8th Consecutive Failure of Sensor Self-Test</td>
<td></td>
</tr>
<tr>
<td>ISD SETUP WARN</td>
<td>Self-Test</td>
<td>Yellow</td>
<td>Failure of Setup Test</td>
<td></td>
</tr>
<tr>
<td>ISD SETUP FAIL</td>
<td>Self-Test</td>
<td>Red</td>
<td>8th Consecutive Failure of Setup Test</td>
<td></td>
</tr>
</tbody>
</table>

1See ISD Troubleshooting Manual, P/N 577013-819, and the VST ISD Troubleshooting Guide 9513-003 found at www.vsthose.com for a complete list of suggestions.

2SD Shutdown Alarms - see "Site Reenable" on page 16-34.

3This warning will result in a ISD VP Status Warn.

OTHER ALARMS

Table 16-4 summarizes additional alarms that may be posted by ISD related equipment. These alarms are not critical to vapor recovery functionality, but could indicate erroneous setup or equipment malfunction. NOTE: Additional TLS console alarms listed in the TLS-3XX Operator’s manual may be posted and may lead to an ISD shutdown alarm if persistent (see ISD Troubleshooting Manual for details).

Table 16-4.- Other Alarms

<table>
<thead>
<tr>
<th>Displayed Message</th>
<th>Indicator Light</th>
<th>Set Condition</th>
<th>Clear Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MISSING RELAY SETUP</td>
<td>Red</td>
<td>One or more required shutdown alarms have not been assigned to a relay.</td>
<td>Setup required shutdown alarms.</td>
</tr>
<tr>
<td>MISSING TANK SETUP</td>
<td>Red</td>
<td>There are no vapor recovery (gasoline) tanks defined or a gasoline pump has not been assigned to a control (shutdown) device in at least one tank.</td>
<td>Complete gasoline tank setup.</td>
</tr>
<tr>
<td>MISSING HOSE SETUP</td>
<td>Red</td>
<td>There are no product meters assigned to a hose.</td>
<td>Assign at least 1 product meter to a hose.</td>
</tr>
<tr>
<td>hnn: VPRFLOW MTR SETUP</td>
<td>Red</td>
<td>Incoming transaction from a hose with an unavailable Vapor Flow Meter.</td>
<td>Configure Vapor Flow Meter (Smart Sensor) and enable it in ISD.</td>
</tr>
<tr>
<td>MISSING VAPOR PRES SEN</td>
<td>Red</td>
<td>There is no Vapor Pressure Sensor setup or detected.</td>
<td>Complete Vapor Pressure Sensor setup.</td>
</tr>
<tr>
<td>MISSING VAPOR FLOW MTR</td>
<td>Red</td>
<td>There is no Vapor Flow Meter setup or detected.</td>
<td>Complete Vapor Flow Meter setup.</td>
</tr>
<tr>
<td>hnn: CHK VAPOR FLOW MTR</td>
<td>Red</td>
<td>Failure of locked rotor test - possible locked vapor flow meter.</td>
<td>Locked rotor test passes or vapor flow meter deconfigured, or test cleared.</td>
</tr>
</tbody>
</table>
There are two main reports (CP-201 required) that are stored by the ISD system: the Monthly Status Report, stored for 12-months, and the Daily Status Report, stored for 365 days. A third report discussed in this section is the ISD Status Report. You can print out ISD reports from the TLS console front panel as shown in Figure 16-28.

- The monthly report includes:
 - ISD operational up-time (as a percentage)
 - EVR/ISD system pass time (as a percentage)
 - The Warning Log
 - The Failure Log
 - The Misc. Event Log

- The daily report includes:
 - Maximum and minimum ullage pressures
 - Results of the Vapor Containment Monitoring Gross (75th percentile), Degradation (95th percentile) ullage pressure test and Vapor Leakage Detection (CVLD) tests
 - Vapor Collection Monitoring test results for each fueling position
 - Vapor Processor Monitoring test results

- ISD Status Report
 - Last test report results
VIEWING ISD REPORTS

You can print out ISD reports from the TLS console front panel as shown in Figure 16-28.

![Diagram of ISD report printing process]

Figure 16-28. Printing ISD Reports on Console Printer
Figure 16-29 shows an example ISD Status Report.

```
ISD STATUS

(SITE NAME)
(SITE STREET)
(CITY, ST)
(PHONE)

(MMM DD, YYYY HH:MM XM)

EVR TYPE: BALANCE
ISD VERSION 01.02
REPORT DATE: SEP 22, 2004
CONTAINMENT TEST GROSS
STATUS: 0.1" WC NOTEST
CONTAINMENT TEST DEGRADE
STATUS: -1.1" WC NOTEST
CONTAINMENT TEST CVLD
STATUS: 3.26 CFH NOTEST
COLLECTION FLOW TEST
STATUS: PASS
ISD SENSOR SELF TEST
STATUS: PASS
ISD SETUP SELF TEST
STATUS: PASS
VP STATUS TEST
STATUS: PASS
VP OVER PRESSURE TEST
STATUS: 0.2" WC PASS
EFFLUENT EMISSIONS TEST
STATUS 5.26 PASS
VP DUTY CYCLE TEST
STATUS 5.00 PASS

This menu appears only if EVR type = BALANCE
```

Figure 16-29. ISD Status Report Example - TLS console printout
Figure 16-30 shows an example ISD Daily Report.

```
ISD DAILY REPORT

(SITE NAME)
(SITE STREET)
(CITY, ST)
(MMM DD, YYYY HH:MM XM)

EVR TYPE: BALANCE
ISD VERSION 01.02
VAPOR PROCESSOR TYPE
VST VAPOR PROCESSOR

REPORT DATE: MMM DD
ISD VERSION 01.02

OVERALL STATUS   PASS
EVR CONTAINMENT  NOTEST
EVR COLLECTION   PASS
STAGE1   2 of   2 PASS
VAPOR PROCESSOR PASS
SELF TEST        PASS
ISD MONITOR UP-TIME 100%

----------------
CONTAINMENT TESTS
GROSS    95%  -0.03 °F
DGRD     75%  -0.78 °F
VAPOR LEAK 0 CFH
MAX        0.9 °F
MIN       -5.0 °F

----------------
COLLECTION TESTS
GROSS
V/L(#)
FP 1: BLEND4
V/L = 0.94(32)
FP 2: BLEND4
V/L = 0.96(66)
FP11: BLEND4
V/L = 1.08(40)
FP12: BLEND4
V/L = 1.09(56)

----------------
PROCESSOR TESTS

VP OVER PRESSURE TEST
STATUS -0.09 °F  PASS

VP STATUS TEST
STATUS PASS

EFFLUENT EMISSIONS TEST
0.084 LB/1KG  PASS

VP DUTY CYCLE TEST
STATUS 0.55  PASS

----------------
SELF TEST

SETUP TEST PASS
SENSOR OUT TEST PASS
```

Figure 16-30. ISD Daily Report Example - TLS console printout
Figure 16-31 shows an example ISD Monthly Report.

```
ISD MONTHLY REPORT

(SITE NAME)
(SITE STREET)
(CITY, ST)
(PHONE)
(MMM DD, YYYY HH:MM XM)

EVR TYPE: BALANCE
ISD VERSION 01.02
VAPOR PROCESSOR TYPE
VST VAPOR PROCESSOR

REPORT DATE: MMM YYYY

OVERALL STATUS   PASS
EVR CONTAINMENT  NOTEST
EVR COLLECTION   PASS
STAGE 2 of 2 NOTEST
VAPOR PROCESSOR PASS
SELF TEST        PASS
ISD MONITOR UP-TIME: 100%
EVR/ISD PASS TIME: 100%

----------------
DATE TIME DEVICE HOSE DESCRIPTION VALUE
----------------
LAST 10 WARNINGS
----------------
LAST 10 FAILURES
----------------
LAST 10 MISC EVENTS

1-02-08 11:59PM
READINESS ISD
ISD:PP EVR:PNP PENDING

1-01-08 11:59PM
READINESS ISD
ISD:PP EVR:NNP PENDING

Note: Warning & Failures lists include monitoring results from:
• Containment • Stage 1
• Collection • Processor

Up to 10 failures and 10 warnings
FP is fueling position number
BLEND is a hose label
BLKD refers to blocked condition

Note: Events
At least 1 action event for every failure listed above.
Description is truncated to include action. Up to 10 shut down and misc. events.

Figure 16-31. ISD Monthly Report Example - TLS console printout
 Viewing ISD Reports via RS-232 Connection

CONNECTING LAPTOP TO CONSOLE

Connect your laptop to the TLS console's RS-232 or Multiport module using one of the methods shown in the examples in Figure 16-32 below.

**Cable** Requirements for Terminal Mode Connection to TLS

<table>
<thead>
<tr>
<th>Connector at PC (DTE)</th>
<th>Connector at TLS (DTE)</th>
<th>Null Modem</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB9</td>
<td>DB9 male</td>
<td>Required</td>
</tr>
<tr>
<td>DB9</td>
<td>DB25 male</td>
<td>Not required</td>
</tr>
<tr>
<td>DB25</td>
<td>DB9 male</td>
<td>Not required</td>
</tr>
<tr>
<td>DB25</td>
<td>DB25 male</td>
<td>Required</td>
</tr>
</tbody>
</table>

**Customer supplied.**

**laptop requires terminal mode software such as Microsoft HyperTerminal.**

Figure 16-32. Connecting laptop to TLS console for serial communication
CONNECTING LAPTOP TO CONSOLE

1. Open your laptop’s serial communication program, e.g., HyperTerminal. You can typically find HyperTerminal under: Start/Programs/Accessories/Communications.

2. After opening the terminal software program, ignore (cancel) any modem/dialing related request windows since you will be directly connecting to the console via serial communications. When the Connection Description window appears (Figure 16-33), enter a connection name, e.g., TLSDIRECT, and click the OK button.

![Figure 16-33. Connection Description window](image)

3. After clicking the OK button, you may see a repeat of the modem/dialing windows, in which case ignore (cancel) them all.

4. When the Connect To window appears (Figure 16-34), depending on your connection method, select either COM1 (if RS-232 port on laptop), USB-Serial Controller (if using USB port on laptop), or Serial I/O PC Card (if using PCMCIA port on laptop) in the ‘Connect using’ drop down box, then click OK button.

![Figure 16-34. Connect To window](image)
5. Next you should see the 'Port Settings' window.

**IMPORTANT! The settings of the laptop's com port must match those of the console's com port to which you are connected.**

a. Go to the console front panel press the MODE key until you see:

```
SETUP MODE
PRESS <FUNCTION> TO CONT
```

b. Press the FUNCTION key until you see the message:

```
COMMUNICATIONS SETUP
PRESS <STEP> TO CONTINUE
```

c. Press the STEP key until you see the message:

```
PORT SETTINGS
PRESS <ENTER>
```

d. Press the PRINT key to printout the port settings for all communication modules installed in the console. Figure 16-35 shows an example port settings printout with the RS-232 module installed. Using the console port settings in the example below, your HyperTerminal ‘Port Settings’ window entries would be Bits per second - 2400, Data bits - 7, Parity - Odd, Stop Bits - 1. For the ‘Flow Control’ entry select None. Click OK.

![Example Port Settings Printout](isd/portset.eps)

This number is the assigned by the console and indicates the slot in which the RS-232 module is installed. It could be 1, 2, or 3. However, for the RS-232 port of a Multiport module, which is installed in slot 4, this number would be 6.

If no RS-232 Security Code has been entered, you will see disabled. If a code has been entered, e.g., 000016, that 6-digit number would appear here. If a code appears, you will need to enter this code with each command you send to the console.

**Figure 16-35. Console comm port settings printout example**

In the example port settings printout above, the RS-232 Security Code is disabled. If the code was enabled you would see a 6-digit number which you will need to enter to access the console (refer to the ‘Sending Console Commands’ paragraph below for more information).
6. After entering your port settings, the program's main window appears (Figure 16-36).

![HyperTerminal main window](image)

**Figure 16-36.** HyperTerminal main window

### SENDING CONSOLE COMMANDS

Table 16-5 shows four important ISD console commands: IV0500, IV0200, IV0100, and I11100. The `<SOH>` shown in the table means that you must press and hold the `Ctrl` key while you press the `A` key.

For example, let's say you want to see the Daily Report Details for the last 10 days.

**Note:** If you want to see the characters of the command as you type them in, click on File menu, then select Properties/Settings (tab)/ASCII Setup and click the check box for ‘Echo typed characters locally’, then click OK to close the window(s) and return to the main screen.

If the RS-232 Security Code is disabled - press and hold the Ctrl key while you press the A key, then type in IV0500010. If the RS-232 Security Code is enabled (e.g., 000016) you must enter the security code before the command - press and hold the Ctrl key while you press the A key, then type in 000016IV0500010.

You will see the typed command on the screen:  ©IV0500010 followed by the response (report) from the console. The © symbol indicates CtrlA and the ♥ symbol indicates the end of the response.

If the console recognizes the command the response displays as soon as the command is typed in.

If the console does not recognize the command you would see something like ©IV0500010©9999FF1B which indicates the console did not recognize the command.
All responses (Reports) can be printed or saved to a file. See the terminal program’s help file for instructions.

<table>
<thead>
<tr>
<th>Report Type</th>
<th>Serial Command (PC to Console)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily Report Details</td>
<td><code>&lt;SOH&gt;IV0500ddd</code>&lt;br&gt;Where ddd = number of days, 001 = yesterday and today, 002 = two days ago, etc.</td>
</tr>
<tr>
<td>Monthly Status Report</td>
<td><code>&lt;SOH&gt;IV0200yyyymm</code>&lt;br&gt;Where yyyy = year number, e.g. 2003, mm = month number, 01 = January, 02 = February, etc.</td>
</tr>
<tr>
<td>Alarm Status</td>
<td><code>&lt;SOH&gt;IV0100</code></td>
</tr>
<tr>
<td>V80 VST Vapor Processor Status</td>
<td><code>&lt;SOH&gt;IV8000</code></td>
</tr>
<tr>
<td>Priority Alarm History</td>
<td><code>&lt;SOH&gt;I11100</code></td>
</tr>
</tbody>
</table>

*<SOH> = Control A. For more information on TLS console serial commands, refer to the V-R Serial Interface Manual.
IV0500
JAN 8, 2008 3:52 PM

(SITE NAME)
(SITE STREET)
(CITY, ST)
(PHONE)

ISD DAILY REPORT DETAILS

EVR TYPE: BALANCE
ISD TYPE: 01.02
VAPOR PROCESSOR TYPE: VST VAPOR PROCESSOR

OVERALL STATUS :WARN
EVR VAPOR COLLECTION :PASS
EVR VAPOR CONTAINMENT :WARN
ISD MONITOR UP-TIME :100%
STAGE I TRANSFERS: 10 of 10 PASS
EVR/ISD PASS TIME : 81%
VAPOR PROCESSOR :PASS

Status Codes: (W)Warn (F)Fail (D)Degradation Fail (G)Gross Fail
(ISD-W)ISD Self-Test Warning (ISD-F)ISD Self-Test Fail (N)No Test

<table>
<thead>
<tr>
<th>ISD</th>
<th>ISD</th>
<th>---CONTAINMENT TESTS---</th>
<th>STAGE</th>
<th>---COLLECTION TESTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE</td>
<td>STATUS</td>
<td>TIME</td>
<td>95%</td>
<td>75%</td>
</tr>
<tr>
<td>12/28</td>
<td>W</td>
<td>100%</td>
<td>0.2</td>
<td>-0.3</td>
</tr>
<tr>
<td>12/29</td>
<td>W</td>
<td>100%</td>
<td>0.2</td>
<td>-0.3</td>
</tr>
<tr>
<td>12/30</td>
<td>PASS</td>
<td>100%</td>
<td>0.2</td>
<td>-0.3</td>
</tr>
<tr>
<td>12/31</td>
<td>PASS</td>
<td>100%</td>
<td>0.2</td>
<td>-0.3</td>
</tr>
<tr>
<td>01/01</td>
<td>PASS</td>
<td>100%</td>
<td>0.2</td>
<td>-0.3</td>
</tr>
<tr>
<td>01/02</td>
<td>PASS</td>
<td>100%</td>
<td>0.2</td>
<td>-0.3</td>
</tr>
<tr>
<td>01/03</td>
<td>PASS</td>
<td>100%</td>
<td>0.2</td>
<td>-0.3</td>
</tr>
<tr>
<td>01/04</td>
<td>PASS</td>
<td>100%</td>
<td>0.4</td>
<td>-0.3</td>
</tr>
<tr>
<td>01/05</td>
<td>PASS</td>
<td>100%</td>
<td>0.2</td>
<td>-0.3</td>
</tr>
<tr>
<td>01/06</td>
<td>PASS</td>
<td>100%</td>
<td>0.2</td>
<td>-0.3</td>
</tr>
<tr>
<td>01/07</td>
<td>PASS</td>
<td>100%</td>
<td>0.2</td>
<td>-0.3</td>
</tr>
</tbody>
</table>

---COLLECTION TESTS-DAILY AVERAGE HOSE FLOW PERFORMANCE------------------------

<table>
<thead>
<tr>
<th>FP4</th>
<th>FP5</th>
<th>FP6</th>
<th>FP7</th>
<th>FP8</th>
<th>FP9</th>
<th>FP10</th>
<th>FP11</th>
<th>FP12</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE</td>
<td>BLEND</td>
<td>BLEND</td>
<td>BLEND</td>
<td>BLEND</td>
<td>BLEND</td>
<td>BLEND</td>
<td>BLEND</td>
<td>BLEND</td>
</tr>
<tr>
<td>12/28</td>
<td>1.06</td>
<td>1.16</td>
<td>0.96</td>
<td>1.21</td>
<td>1.10</td>
<td>1.03</td>
<td>1.08</td>
<td>1.13</td>
</tr>
<tr>
<td>12/29</td>
<td>1.03</td>
<td>1.12</td>
<td>1.16</td>
<td>1.07</td>
<td>1.13</td>
<td>1.01</td>
<td>0.97</td>
<td>1.06</td>
</tr>
<tr>
<td>12/30</td>
<td>1.04</td>
<td>0.96</td>
<td>0.95</td>
<td>1.06</td>
<td>1.11</td>
<td>0.97</td>
<td>1.14</td>
<td>1.18</td>
</tr>
<tr>
<td>12/31</td>
<td>1.07</td>
<td>1.20</td>
<td>1.05</td>
<td>1.10</td>
<td>1.00</td>
<td>0.90</td>
<td>1.09</td>
<td>1.07</td>
</tr>
<tr>
<td>01/01</td>
<td>1.03</td>
<td>1.18</td>
<td>1.19</td>
<td>0.85</td>
<td>1.16</td>
<td>1.24</td>
<td>1.13</td>
<td>1.31</td>
</tr>
<tr>
<td>01/02</td>
<td>0.94</td>
<td>0.98</td>
<td>1.10</td>
<td>0.97</td>
<td>1.10</td>
<td>0.91</td>
<td>0.98</td>
<td>1.08</td>
</tr>
<tr>
<td>01/03</td>
<td>1.12</td>
<td>0.96</td>
<td>1.17</td>
<td>1.12</td>
<td>1.07</td>
<td>1.06</td>
<td>1.12</td>
<td>1.12</td>
</tr>
<tr>
<td>01/04</td>
<td>1.04</td>
<td>1.18</td>
<td>1.09</td>
<td>1.16</td>
<td>1.16</td>
<td>0.90</td>
<td>1.19</td>
<td>1.05</td>
</tr>
<tr>
<td>01/05</td>
<td>1.13</td>
<td>0.94</td>
<td>1.11</td>
<td>1.02</td>
<td>1.10</td>
<td>1.10</td>
<td>1.21</td>
<td>1.19</td>
</tr>
<tr>
<td>01/06</td>
<td>1.11</td>
<td>1.14</td>
<td>1.09</td>
<td>1.18</td>
<td>0.95</td>
<td>1.15</td>
<td>1.09</td>
<td>1.05</td>
</tr>
<tr>
<td>01/07</td>
<td>0.96</td>
<td>1.13</td>
<td>1.07</td>
<td>0.84</td>
<td>1.13</td>
<td>1.02</td>
<td>1.06</td>
<td>1.12</td>
</tr>
</tbody>
</table>

Figure 16-37. ISD Daily Report Details - Serial to PC Format
IV0200
JAN 8, 2008 3:53 PM

(SITE NAME)
(SITE STREET)
(CITY, ST)
(PHONE)

**ISD MONTHLY STATUS REPORT**

**EVR TYPE:** BALANCE  
**ISD TYPE:** 01.02  
**VAPOR PROCESSOR TYPE:** VST VAPOR PROCESSOR

**OVERALL STATUS**  
**EVR VAPOR COLLECTION**  
**EVR VAPOR CONTAINMENT**  
**ISD MONITOR UP-TIME**  
**EVR/ISD PASS TIME**  
**STAGE I TRANSFERS:** 33 of 33 PASS  
**VAPOR PROCESSOR**  

**CARB EVR CERTIFIED OPERATING REQUIREMENTS**

**ISD MONITORING TEST PASS/FAIL THRESHOLDS**

<table>
<thead>
<tr>
<th>Period</th>
<th>Below</th>
<th>Above</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAPOR COLLECTION BALANCE SYS FLOW PERFORMANCE</td>
<td>1DAYS</td>
<td>0.60</td>
</tr>
<tr>
<td>VAPOR CONTAINMENT GROSS FAIL, 95th PERCENTILE</td>
<td>7DAYS</td>
<td>----</td>
</tr>
<tr>
<td>VAPOR CONTAINMENT DEGRADATION, 75th PERCENTILE</td>
<td>30DAYS</td>
<td>----</td>
</tr>
<tr>
<td>VAPOR CONTAINMENT LEAK DETECTION FAIL 02&quot;WCG</td>
<td>7DAYS</td>
<td>----</td>
</tr>
<tr>
<td>STAGE I VAPOR TRANSFER FAIL, 50th PERCENTILE</td>
<td>20MINS</td>
<td>----</td>
</tr>
<tr>
<td>VAPOR PROCESSOR PRESSURE FAIL</td>
<td>1DAYS</td>
<td>----</td>
</tr>
<tr>
<td>VAPOR PROCESSOR MASS EMISSION FAIL (LB/1KG)</td>
<td>1DAYS</td>
<td>----</td>
</tr>
<tr>
<td>VAPOR PROCESSOR DUTY CYCLE FAIL</td>
<td>1DAYS</td>
<td>----</td>
</tr>
</tbody>
</table>

**WARNING ALARMS**

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Description</th>
<th>Reading</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-12-30</td>
<td>00:02:33</td>
<td>VAPOR CONTAINMENT LEAKAGE</td>
<td>CPH02 INCHES WC</td>
<td>15.51</td>
</tr>
<tr>
<td>07-12-29</td>
<td>00:02:07</td>
<td>VAPOR CONTAINMENT LEAKAGE</td>
<td>CPH02 INCHES WC</td>
<td>18.24</td>
</tr>
<tr>
<td>07-12-28</td>
<td>00:02:01</td>
<td>VAPOR CONTAINMENT LEAKAGE</td>
<td>CPH02 INCHES WC</td>
<td>17.34</td>
</tr>
<tr>
<td>07-12-27</td>
<td>00:01:36</td>
<td>VAPOR CONTAINMENT LEAKAGE</td>
<td>CPH02 INCHES WC</td>
<td>17.11</td>
</tr>
<tr>
<td>07-12-26</td>
<td>00:01:41</td>
<td>VAPOR CONTAINMENT LEAKAGE</td>
<td>CPH02 INCHES WC</td>
<td>18.66</td>
</tr>
<tr>
<td>07-12-10</td>
<td>00:02:05</td>
<td>FLOW PERFORMANCE HOSE BLOCKAGE</td>
<td>FP 8 BLEND4</td>
<td>BLKD</td>
</tr>
<tr>
<td>07-12-06</td>
<td>00:02:40</td>
<td>VAPOR PROCESSOR OVER PRESSURE</td>
<td>DAILY 95%</td>
<td>1.25</td>
</tr>
</tbody>
</table>

**FAILURE ALARMS**

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Description</th>
<th>Reading</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-12-11</td>
<td>00:02:05</td>
<td>FLOW PERFORMANCE HOSE BLOCKAGE</td>
<td>FP 8 BLEND4</td>
<td>BLKD</td>
</tr>
</tbody>
</table>

**SHUTDOWN & MISCELLANEOUS EVENTS**

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Description</th>
<th>Action/Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-12-13</td>
<td>19:52:52</td>
<td>VAPOR PROCESSOR</td>
<td>TEST MANUALLY CLEARED</td>
</tr>
<tr>
<td>07-12-11</td>
<td>00:02:18</td>
<td>FLOW PERFORMANCE BLK</td>
<td>DISABLED FP 08</td>
</tr>
</tbody>
</table>

---

**Figure 16-38. ISD Monthly Status Report - Serial to PC Format**
**ISD Alarm Status Report**

**EVR Type:** BALANCE  
**ISD Type:** 01.02  
**Vapor Processor Type:** VST Vapor Processor

### Overall Status
- EVR Vapor Collection: PASS
- ISD Monitor Up-Time: 100%
- Stage I Transfers: 2 of 2 PASS

### Warning Alarms

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-12-30</td>
<td>00:02:33</td>
<td>Vapor Containment Leakage</td>
<td>15.51</td>
</tr>
<tr>
<td>07-12-29</td>
<td>00:02:07</td>
<td>Vapor Containment Leakage</td>
<td>18.24</td>
</tr>
<tr>
<td>07-12-28</td>
<td>00:02:01</td>
<td>Vapor Containment Leakage</td>
<td>17.34</td>
</tr>
<tr>
<td>07-12-27</td>
<td>00:01:36</td>
<td>Vapor Containment Leakage</td>
<td>17.11</td>
</tr>
<tr>
<td>07-12-12</td>
<td>00:01:41</td>
<td>Vapor Containment Leakage</td>
<td>18.66</td>
</tr>
<tr>
<td>07-12-10</td>
<td>00:02:05</td>
<td>Flow Performance Hose Blockage</td>
<td>BLKD</td>
</tr>
<tr>
<td>07-12-06</td>
<td>00:02:40</td>
<td>Vapor Processor Over Pressure</td>
<td>1.25</td>
</tr>
<tr>
<td>07-11-16</td>
<td>00:02:17</td>
<td>Flow Performance Hose Blockage</td>
<td>BLKD</td>
</tr>
<tr>
<td>07-11-13</td>
<td>00:02:28</td>
<td>Flow Performance Hose Blockage</td>
<td>BLKD</td>
</tr>
<tr>
<td>07-11-11</td>
<td>00:03:19</td>
<td>Flow Performance Hose Blockage</td>
<td>BLKD</td>
</tr>
</tbody>
</table>

### Failure Alarms

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-11-14</td>
<td>00:02:18</td>
<td>Flow Performance Hose Blockage</td>
<td>BLKD</td>
</tr>
<tr>
<td>07-11-12</td>
<td>00:02:38</td>
<td>Flow Performance Hose Blockage</td>
<td>BLKD</td>
</tr>
<tr>
<td>07-11-09</td>
<td>00:03:41</td>
<td>Containment Gross Over Pressure</td>
<td>4.60</td>
</tr>
<tr>
<td>07-11-03</td>
<td>00:01:25</td>
<td>Vapor Processor Over Pressure</td>
<td>5.00</td>
</tr>
<tr>
<td>07-10-31</td>
<td>00:02:45</td>
<td>Vapor Processor Status</td>
<td>0.693</td>
</tr>
<tr>
<td>07-10-28</td>
<td>00:00:39</td>
<td>Vapor Processor Over Pressure</td>
<td>4.89</td>
</tr>
<tr>
<td>07-10-19</td>
<td>00:01:27</td>
<td>Vapor Processor Over Pressure</td>
<td>5.00</td>
</tr>
<tr>
<td>07-10-15</td>
<td>00:03:14</td>
<td>Flow Performance Hose Blockage</td>
<td>BLKD</td>
</tr>
<tr>
<td>07-10-15</td>
<td>00:03:13</td>
<td>Flow Performance Hose Blockage</td>
<td>BLKD</td>
</tr>
<tr>
<td>07-10-14</td>
<td>00:03:11</td>
<td>Flow Performance Hose Blockage</td>
<td>BLKD</td>
</tr>
</tbody>
</table>

### Shutdown & Miscellaneous Events

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Description</th>
<th>Action/Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-12-13</td>
<td>19:52:52</td>
<td>Vapor Processor</td>
<td>Test Manually Cleared</td>
</tr>
<tr>
<td>07-11-18</td>
<td>00:02:24</td>
<td>Readiness ISD:PP EVR:PPP</td>
<td>ISD &amp; EVR Ready</td>
</tr>
<tr>
<td>07-11-17</td>
<td>13:09:06</td>
<td>Readiness ISD:PP EVR:NNN</td>
<td>EVR Readiness Pending</td>
</tr>
<tr>
<td>07-11-17</td>
<td>13:09:06</td>
<td>ISD Startup</td>
<td></td>
</tr>
<tr>
<td>07-11-17</td>
<td>13:03:24</td>
<td>ISD Shutdown</td>
<td></td>
</tr>
<tr>
<td>07-11-14</td>
<td>00:02:18</td>
<td>Flow Performance BLK</td>
<td>Disabled FP 08 BLENDD4</td>
</tr>
<tr>
<td>07-11-12</td>
<td>00:02:38</td>
<td>Flow Performance BLK</td>
<td>Disabled FP 06 BLENDD4</td>
</tr>
<tr>
<td>07-11-09</td>
<td>00:03:41</td>
<td>Containment Gross</td>
<td>Disabled Dispensers</td>
</tr>
<tr>
<td>07-11-04</td>
<td>01:00:00</td>
<td>Time Change Detected At:</td>
<td>07-11-04 02:00:13</td>
</tr>
<tr>
<td>07-11-03</td>
<td>00:01:25</td>
<td>Vapor Processor Problem</td>
<td>Disabled Dispensers</td>
</tr>
</tbody>
</table>

**Figure 16-39.  ISD Alarm Status Report - Serial to PC Format**
IV8000
SEP 30, 2007 12:27 AM

(SITE NAME)
(SITE STREET)
(CITY, ST)
(PHONE)
(MMM DD, YYYY HH:MM XM)

VAPOR PROCESSOR

<table>
<thead>
<tr>
<th>DATE-TIME ON</th>
<th>ELAPSED TIME ON</th>
<th>PRESSURE INCHES H2O</th>
<th>RUNTIME ON</th>
<th>RUNTIME OFF</th>
<th>FAULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-04-07 3:31PM</td>
<td>8.87</td>
<td>0.244</td>
<td>-0.202</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>5-05-07 4:17AM</td>
<td>3.35</td>
<td>0.202</td>
<td>-0.212</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>5-07-07 10:17PM</td>
<td>3.50</td>
<td>0.206</td>
<td>-0.221</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>5-07-07 10:28PM</td>
<td>15.12</td>
<td>0.384</td>
<td>-0.356</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>5-08-07 8:16PM</td>
<td>21.77</td>
<td>0.325</td>
<td>-0.211</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>5-09-07 6:35PM</td>
<td>20.60</td>
<td>0.368</td>
<td>-0.276</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>5-10-07 8:03PM</td>
<td>6.18</td>
<td>0.226</td>
<td>-0.398</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>5-10-07 8:15PM</td>
<td>2.55</td>
<td>0.231</td>
<td>-0.227</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>5-13-07 8:55PM</td>
<td>18.23</td>
<td>0.314</td>
<td>-0.205</td>
<td>NO</td>
<td></td>
</tr>
</tbody>
</table>

Figure 16-40. Vapor Processor Status Report - Serial to PC Format

I11100
APR 17, 2008 12:30 AM

<Site Name>
<Site Address>
<Site Address>
<Site Address>

PRIORITY ALARM HISTORY

<table>
<thead>
<tr>
<th>ID</th>
<th>CATEGORY</th>
<th>DESCRIPTION</th>
<th>ALARM TYPE</th>
<th>STATE</th>
<th>DATE</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 2</td>
<td>TANK</td>
<td>Premium 91</td>
<td>PROBE OUT</td>
<td>CLEAR</td>
<td>4-04-08</td>
<td>12:14PM</td>
</tr>
<tr>
<td>T 2</td>
<td>TANK</td>
<td>Premium 91</td>
<td>PROBE OUT</td>
<td>ALARM</td>
<td>4-04-08</td>
<td>12:14PM</td>
</tr>
<tr>
<td>T 2</td>
<td>TANK</td>
<td>Premium 91</td>
<td>LOW PRODUCT ALARM</td>
<td>CLEAR</td>
<td>4-04-08</td>
<td>12:04PM</td>
</tr>
<tr>
<td>T 2</td>
<td>TANK</td>
<td>Premium 91</td>
<td>PROBE OUT</td>
<td>CLEAR</td>
<td>4-04-08</td>
<td>12:04PM</td>
</tr>
<tr>
<td>T 1</td>
<td>TANK</td>
<td>Unlead 87</td>
<td>PROBE OUT</td>
<td>CLEAR</td>
<td>4-04-08</td>
<td>11:37AM</td>
</tr>
<tr>
<td>T 1</td>
<td>TANK</td>
<td>Unlead 87</td>
<td>PROBE OUT</td>
<td>ALARM</td>
<td>4-04-08</td>
<td>10:51AM</td>
</tr>
<tr>
<td>T 2</td>
<td>TANK</td>
<td>Premium 91</td>
<td>PROBE OUT</td>
<td>ALARM</td>
<td>4-04-08</td>
<td>10:42AM</td>
</tr>
<tr>
<td>T 2</td>
<td>TANK</td>
<td>Premium 91</td>
<td>LOW PRODUCT ALARM</td>
<td>ALARM</td>
<td>4-04-08</td>
<td>10:42AM</td>
</tr>
<tr>
<td>8</td>
<td>OTHER</td>
<td>PRES SEN 2 DISP 1-2</td>
<td>COMMUNICATION ALARM</td>
<td>CLEAR</td>
<td>3-26-08</td>
<td>1:39PM</td>
</tr>
<tr>
<td>8</td>
<td>OTHER</td>
<td>PRES SEN 2 DISP 1-2</td>
<td>COMMUNICATION ALARM</td>
<td>ALARM</td>
<td>3-26-08</td>
<td>1:37PM</td>
</tr>
<tr>
<td>SYSTEM</td>
<td>BATTERY IS OFF</td>
<td>BATTERY IS OFF</td>
<td>CLEAR</td>
<td>3-10-08</td>
<td>8:00AM</td>
<td></td>
</tr>
<tr>
<td>SYSTEM</td>
<td>BATTERY IS OFF</td>
<td>BATTERY IS OFF</td>
<td>ALARM</td>
<td>3-10-08</td>
<td>8:00AM</td>
<td></td>
</tr>
</tbody>
</table>

Figure 16-41. Priority Alarm Report - Serial to PC Format
6 Maintenance

**TLS Console**

The TLS console, including interface modules, do not require scheduled maintenance. ISD System Self-Test Monitoring algorithms are designed to verify proper selection, setup and operation of the TLS console and sensors. Servicing should be performed in accordance with the In-Station Diagnostic System Troubleshooting Guide, Manual 577013-819 in response to warning or alarm conditions.

**Air Flow Meter**

There is no recommended maintenance, inspection nor calibration for the Air Flow Meter. Servicing should be performed in accordance with the In-Station Diagnostic System Troubleshooting Guide, Manual 577013-819 in response to warning or alarm conditions.

**Vapor Pressure Sensor**

There is no recommended maintenance, inspection nor calibration for the Vapor Pressure Sensor. Servicing should be performed in accordance with the In-Station Diagnostic System Troubleshooting Guide, Manual 577013-819 in response to warning or alarm conditions.
7 Diagnostic Menus

The diagnostic menus below are accessed and viewed from the TLS console front panel.

Smart Sensor Diagnostic Menu

The Smart Sensor Diagnostic Menu is accessed and viewed from the TLS console front panel. The menu includes options for printing communication data, constants, channels, and a calibrate function. Each option is selected by pressing the appropriate key sequence:

- **COMM DATA**
  - Prints out communication data - see example below
  - Key sequence: Press <PRINT>

- **CONSTANTS**
  - Prints out constants - see example below
  - Key sequence: Press <PRINT>

- **CHANNELS**
  - Prints out channel data - see example below
  - Key sequence: Press <PRINT>

- **CALIBRATE SMARTSENSOR**
  - This menu only appears if this smart sensor type is a pressure sensor
  - Key sequence: Press <ENTER>

**SYSTEM DIAGNOSTIC**

- Press <STEP> to continue

**DIAG MODE**

- Press <FUNCTION> to continue

**Key Legend**

- M: Mode
- B: Backup
- C: Change
- E: Enter
- P: Print

**Figure 16-42. Smart Sensor Diagnostic Menu**

---

**SS COMM DIAG**

- s 1: APMI FP1-2
- SAMPLES READ 58
- SAMPLES USED 54
- PARITY ERR 0
- PARTIAL READ 0
- COMM ERR 0
- RESTARTS 0

**SS CONSTANTS DIAG**

- s 1: APMI FP1-2
- VAPOR PRESSURE 1007
- SERIAL NUMBER 1007
- PROTOCOL VERSION 0

**SS CHANNEL DIAG**

- s 1: APMI FP1-2
- YY-MM-DD HH:MM:SS
- C00 B50B 3D68 00E0 0000
- C04 0000 03EF 0000 0004
- C08 0A3C 3D68 5693 0081
- C12 80C4 80A4 0104 2579
- C16 0000 0000 00A3 03D6
- C20 0709 0032 04C9 880F

---

**Figure 16-42. Smart Sensor Diagnostic Menu**
ISD Diagnostic Menu

Notes:
1. All repair dates are saved in the Miscellaneous Event Log.
2. Reference the Clear Test Repair Menu table on the next page.

Figure 16-43. ISD Diagnostic Menu
## Table 16-6.- Clear Test Repair Menu

<table>
<thead>
<tr>
<th>Menu Selection</th>
<th>Clears Alarms</th>
<th>Reset Dates</th>
</tr>
</thead>
</table>
| Containment Over Press    | ISD GROSS PRESSURE WARN  
ISD GROSS PRESSURE FAIL  
ISD DEGRD PRESSURE WARN  
ISD DEGRD PRESSURE FAIL  
ISD VP PRESSURE WARN  
ISD VP PRESSURE FAIL      | Containment Test Time                                                         |
| Vapor Leakage Test        | ISD VAPOR LEAKAGE WARN  
ISD VAPOR LEAKAGE FAIL                                                      | Vapor Leak Test Time             |
| Vapor Collection Test     | GROSS COLLECT WARN  
GROSS COLLECT FAIL  
DEGRD COLLECT WARN  
DEGRD COLLECT FAIL  
FLOW COLLECT WARN  
FLOW COLLECT FAIL  
AIRFLOW MTR SETUP       | Hose Test Time                                                                 |
| Sensor Out Test           | ISD SENSOR OUT WARN  
ISD SENSOR OUT FAIL                                                           | Sensor Out Test Time             |
| Setup Test                | ISD SETUP WARN  
ISD SETUP FAIL                                                               | Setup Self Test Time             |
| Processor Status Test     | ISD VP STATUS WARN  
ISD VP STATUS FAIL  
VP EMISSIONS WARN  
VP EMISSIONS FAIL  
VP DUTY CYCLE WARN  
VP DUTY CYCLE FAIL       | Valid Vapor Processor Test Time                                               |
7 Diagnostic Menus

VST ECS Membrane Processor Diagnostic Menu

**Figure 16-44. VST ECS Membrane Processor Diagnostic Menu**

- **PMC VERSION:** 01.01
- **VAPOR PRESSURE:** INCHES H₂O: -xx.xxx
- **VAPOR PROCESSOR MODE:** AUTOMATIC
  - <CHANGE> selects AUTOMATIC (default) / MANUAL
- **VAPOR PROCESSOR STATE:** VP STATE: OFF
  - If VP mode = MANUAL and relay configured Then, <CHANGE> selects ON / OFF
- **HYDROCARBON SENSOR HC SENSOR:** XX.XXX%

Prints out a copy of the PMC Diagnostic report. See example at right.
Appendix A: Site EVR/ISD Equipment Location Worksheet

You should create a table listing each hose, fueling point, Air Flow Meter’s serial number, etc. This information will be required when you perform the EVR/ISD Setup hose/meter dispenses. This appendix contains blank worksheets for sites with single- and multi-hose dispensers. You are advised to fill in all of the appropriate information about your installed equipment, complete the TLS console’s EVR/ISD setup, then perform the Product Meter ID dispensing procedure.

Single-Hose Fueling Position Dispensers

<table>
<thead>
<tr>
<th>Hose ID</th>
<th>FP</th>
<th>Hose Label</th>
<th>AFM Serial Number</th>
<th>AFM Label</th>
<th>Product Dispense(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1st</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;</td>
<td></td>
</tr>
</tbody>
</table>

1 Each hose must have a unique number (1 - 99).
2 This is the Fuel Position Label which is the visible number on the outside of the dispenser (1 - 2 digits).
3 The hose label is always Blend for single-hose dispensers.
4 This is the serial number on the Air Flow Meter (1 per dispenser).
5 This is the AFM label entered in EVR/ISD setup (1 per dispenser and must be in the format shown, e.g., AFM FP1&2 - where 1 and 2 refer to the one [or two] numbers on the outside of the dispenser).
6 After you have entered the contents of columns 1 - 5 into the TLS EVR/ISD hose table setup, you now must follow automap procedure and dispense from each gas meter AND one blend grade that feeds each hose. Enter a check beneath each product following a dispense from the hose.
**Appendix A: Site EVR/ISD Equipment Location Worksheet**

### Single-Hose Fueling Position Dispensers

#### FILL OUT - USE TO SETUP HOSE TABLE

<table>
<thead>
<tr>
<th>Hose ID</th>
<th>FP</th>
<th>Hose Label</th>
<th>AFM Serial Number</th>
<th>AFM Label</th>
<th>Product Dispense(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1st</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;__</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;__</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;__</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;__</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;__</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;__</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;__</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;__</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;__</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;__</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;__</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;__</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;__</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;__</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;__</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;__</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;__</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;__</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;__</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP__ &amp;__</td>
<td></td>
</tr>
</tbody>
</table>
## Appendix A: Site EVR/ISD Equipment Location Worksheet

### Single-Hose Fueling Position Dispensers

### Fill Out - Use to Setup Hose Table

<table>
<thead>
<tr>
<th>Hose ID</th>
<th>FP</th>
<th>Hose Label</th>
<th>AFM Serial Number</th>
<th>AFM Label</th>
<th>Product Dispense(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP_&amp;_</td>
<td>1st 2nd 3rd 4th</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP_&amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP_&amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP_&amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP_&amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP_&amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP_&amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP_&amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP_&amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP_&amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP_&amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP_&amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP_&amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP_&amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP_&amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP_&amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP_&amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP_&amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP_&amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP_&amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP_&amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP_&amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP_&amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP_&amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP_&amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP_&amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blend</td>
<td></td>
<td>AFM FP_&amp;_</td>
<td></td>
</tr>
</tbody>
</table>

**Note:** Fill out the above table to set up the hose table. Use the auto map check list for reference.
### Multi-Hose Fueling Position Dispensers

<table>
<thead>
<tr>
<th>Hose ID&lt;sup&gt;1&lt;/sup&gt;</th>
<th>FP&lt;sup&gt;2&lt;/sup&gt;</th>
<th>Hose Label&lt;sup&gt;3&lt;/sup&gt;</th>
<th>AFM Serial Number&lt;sup&gt;4&lt;/sup&gt;</th>
<th>AFM Label&lt;sup&gt;5&lt;/sup&gt;</th>
<th>Product Dispense&lt;sup&gt;6&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AFM FP__ &amp;__</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AFM FP__ &amp;__</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AFM FP__ &amp;__</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AFM FP__ &amp;__</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<sup>1</sup> Each hose must have a unique number (1 - 99).

<sup>2</sup>This is the Fuel Position Label which is the visible number on the outside of the dispenser (1 - 2 digits).

<sup>3</sup>The hose label is the grade.

<sup>4</sup>This is the serial number on the Air Flow Meter (1 per dispenser).

<sup>5</sup>This is the AFM label entered in EVR/ISD setup (1 per dispenser and must be in the format shown, e.g., AFM FP1&2 - where 1 and 2 refer to the one [or two] numbers on the outside of the dispenser).

<sup>6</sup>After you have entered the contents of columns 1 - 5 into the TLS EVR/ISD hose table setup, you now must follow automap procedure and dispense from each hose. Enter a check in this column following a dispense from the hose.
**Appendix A: Site EVR/ISD Equipment Location Worksheet**

**Multi-Hose Fueling Position Dispensers**

---

**FILL OUT - USE TO SETUP HOSE TABLE**

<table>
<thead>
<tr>
<th>Hose ID</th>
<th>FP</th>
<th>Hose Label</th>
<th>AFM Serial Number</th>
<th>AFM Label</th>
<th>Product Dispense</th>
</tr>
</thead>
</table>

- AFM FP __ & __
- AFM FP __ & __
- AFM FP __ & __

---

ARB Approved IOM 16 - ISD Install, Setup & Operation Manual - Executive Order VR-204
<table>
<thead>
<tr>
<th>Hose ID</th>
<th>FP</th>
<th>Hose Label</th>
<th>AFM Serial Number</th>
<th>AFM Label</th>
<th>Product Dispense</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AFM FP_ &amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AFM FP_ &amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AFM FP_ &amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AFM FP_ &amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AFM FP_ &amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AFM FP_ &amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AFM FP_ &amp;_</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AFM FP_ &amp;_</td>
<td></td>
</tr>
</tbody>
</table>
## FILL OUT - USE TO SETUP HOSE TABLE

<table>
<thead>
<tr>
<th>Hose ID</th>
<th>FP</th>
<th>Hose Label</th>
<th>AFM Serial Number</th>
<th>AFM Label</th>
<th>Product Dispense</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**AUTOMAP CHECK LIST**

- AFM FP __ & __
- AFM FP __ & __
- AFM FP __ & __
<table>
<thead>
<tr>
<th>Hose ID</th>
<th>FP</th>
<th>Hose Label</th>
<th>AFM Serial Number</th>
<th>AFM Label</th>
<th>Product Dispense</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>AFM FP_ &amp;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AFM FP_ &amp;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AFM FP_ &amp;</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Form 1

**Data Form for Vapor Pressure Sensor UST Pressure Test**

<table>
<thead>
<tr>
<th>DATE OF TEST</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SERVICE COMPANY NAME</td>
<td>SERVICE COMPANY’S TELEPHONE</td>
</tr>
<tr>
<td>SERVICE TECHNICIAN</td>
<td>VST or VEEDEER-ROOT TECH CERTIFICATION # (as applicable)</td>
</tr>
<tr>
<td></td>
<td>ICC or DISTRICT TRAINING CERTIFICATION (as applicable)</td>
</tr>
<tr>
<td>STATION NAME</td>
<td>DISTRICT PERMIT #</td>
</tr>
<tr>
<td>STATION ADDRESS</td>
<td>CITY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRESSURE SENSOR LOCATION: DISPENSER FUELING POINT (FP) NUMBERS</th>
<th>FP #</th>
<th>PRESSURE SENSOR SERIAL NUMBER:</th>
</tr>
</thead>
</table>

**STEP 3**

**DIGITAL MANOMETER VALUE** _______________ inches WC

**STEP 3**

**TLS 350 SENSOR VALUE** _______________ inches WC

*(OBTAIN VALUE USING TLS CONSOLE KEYPAD SEQUENCE SHOWN IN FIG. 16-21, Vapor Pressure)*

**STEP 4**

TLS 350 Sensor Value within ±0.2 inches WC of Digital Manometer Value? Yes [ ] No [ ]

**IF NO:** THE PRESSURE SENSOR IS NOT IN COMPLIANCE WITH THE PRESSURE SENSOR REQUIREMENTS.

**STEP 5**

MODE KEY PRESSED TO EXIT PMC DIAGNOSTIC MENU? [ ]
# Data Form for Vapor Pressure Sensor Ambient Reference Test

<table>
<thead>
<tr>
<th>DATE OF TEST</th>
<th>SERVICE COMPANY NAME</th>
<th>SERVICE COMPANY’S TELEPHONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>VST or VEEDE-ROOT TECH CERTIFICATION # (as applicable)</td>
<td>VST or VEEDE-ROOT TECH CERTIFICATION # (as applicable)</td>
<td></td>
</tr>
<tr>
<td>ICC or DISTRICT TRAINING CERTIFICATION (as applicable)</td>
<td>ICC or DISTRICT TRAINING CERTIFICATION (as applicable)</td>
<td></td>
</tr>
<tr>
<td>STATION NAME</td>
<td>DISTRICT PERMIT #</td>
<td></td>
</tr>
<tr>
<td>STATION ADDRESS</td>
<td>CITY</td>
<td>STATE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STEP 1</th>
<th>PRESSURE SENSOR LOCATION: DISPENSER FUELING POINT (FP) NUMBERS</th>
<th>FP #</th>
<th>PRESSURE SENSOR SERIAL NUMBER:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>STEP 2</th>
<th>REFERENCE PORT CAP REMOVED?</th>
<th>VALVE SET TO AMBIENT REFERENCE PORT (PER FIG. 16-20)?</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>STEP 3</th>
<th>NON-CALIBRATED SENSOR VALUE Inches WC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(OBTAIN VALUE USING TLS CONSOLE KEYPAD SEQUENCE SHOWN IN FIG. 16-21, Vapor Pressure)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STEP 4</th>
<th>PRESSURE BETWEEN +0.20 &amp; -0.20?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>IF NO: THE PRESSURE SENSOR IS NOT IN COMPLIANCE WITH THE PRESSURE SENSOR REQUIREMENTS.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STEP 5</th>
<th>REFERENCE PORT CAP REPLACED?</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALVE SET TO NORMAL VALVE POSITION (PER FIG 16-20)?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STEP 6</th>
<th>MODE KEY PRESSED TO EXIT PMC DIAGNOSTIC MENU?</th>
</tr>
</thead>
</table>

## Operability Test Procedure Data Worksheet

### Veeder-Root In-Station Diagnostics (ISD) Balance Vapor Flow Meter Operability Test Procedure

<table>
<thead>
<tr>
<th>Date of Test</th>
<th>Service Company Name</th>
<th>Service Company’s Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Service Technician</th>
<th>Veeder-Root Tech Certification #</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station Name</th>
<th>District Permit #</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station Address</th>
<th>City</th>
<th>State Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### ISD Flow Meter Total

<table>
<thead>
<tr>
<th>ISD Flow Meter Total</th>
<th>Gas Flow Meter Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 08 4.13 4.15</td>
<td>4.9 4.12 4.12 4.13 4.15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Meter SN</th>
<th>Fueling Pos</th>
<th>Start</th>
<th>Stop</th>
<th>Difference Gal (Stop – Start)</th>
<th>Start</th>
<th>Stop</th>
<th>Difference Cubic Feet (Stop – Start)</th>
<th>Cubic feet To gallons (^1)</th>
<th>% Diff (^2)</th>
<th>Pass</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Gallons = CubicFeet \times 7.481

\(^2\) \% Diff = \frac{ISDDiffGal – GasFlowMet erDiffGal}{GasFlowMet erDiffGal} \times 100
# Site Shutdown Test Data Form

<table>
<thead>
<tr>
<th>DATE OF TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERVICE COMPANY NAME</td>
</tr>
<tr>
<td>SERVICE TECHNICIAN</td>
</tr>
<tr>
<td>STATION NAME</td>
</tr>
<tr>
<td>STATION ADDRESS</td>
</tr>
</tbody>
</table>

## STEPS

<table>
<thead>
<tr>
<th>STEP</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>POWER REMOVED FROM TLS CONSOLE?</td>
</tr>
<tr>
<td>2.</td>
<td>POWER TO SUBMERSIBLE PUMPS REMOVED BY TLS? (VERIFY GASOLINE FUELING DISABLED)</td>
</tr>
<tr>
<td>3.</td>
<td>POWER RESTORED TO TLS CONSOLE?</td>
</tr>
</tbody>
</table>

## COMMENTS (INCLUDE DESCRIPTION OF REPAIRS MADE)