# **PM Speciation Profiles for Tire Burning**

# —PM1301 (Controlled Tire Combustion) & PM1302 (Uncontrolled Open Tire Fire)

Wenli Yang, PhD, PE

Air Quality Planning and Science Division

November 2, 2018

#### 1. Introduction

More than 48 million reusable and waste tires are generated every year across California. Scrap tires represent both a resource opportunity and a disposal problem [1]. One of the major uses for scrap tires is fuel, or so-called tire-derived-fuel (TDF). Scrap tires are typically used as a supplement to traditional fuels such as coal, coke or woodchips. When the TDF is burned in combustors specifically designed for efficient combustion of solid fuel, such as kilns and boilers, the combustion is under control. The combustors are usually also equipped with add-on air pollution control devices for the control of particulate emissions. However, waste tires which remain in stockpiles pose a potential threat to public health, the environment, and safety. Open fires on stockpiled scrap tires are uncontrollable and hard to extinguish. The incomplete combustion during tire burning produces unhealthful emissions that are directly released to the atmosphere.

The current CARB speciation profile database lacks profiles for both controlled and uncontrolled tire burning. In this work, the following two particulate matter (PM) speciation profile are generated based on source testing data to fill the gap:

PM1301: Controlled tire combustion

• PM1302: Uncontrolled open tire fire

## 2. Methodology

#### 2.1 Controlled tire combustion

Scrap tires can be used to supplement fuel burning in combustors, such as kilns and boilers. The combustors are specifically designed for efficient combustion of solid fuel; therefore, the burning is well controlled. Several source tests were conducted on TDF combustion in California between 1996 and 1999, including the Mitsubishi Cement Plant test, the California Portland Cement Company test, the Kaiser Cement Corporation test, and the Stockton Cogen Inc. test. All of these tests focused on emission factors of AB2588 toxic species, such as polycyclic aromatic hydrocarbons (PAHs) and heavy metals. These studies are valuable data sources for generating emission factors of the

toxic species as needed. However, the key components of PM speciation profiles, such as elemental carbon (EC), organic carbon (OC), and sulfate, are not the species of interest in these source tests. Therefore, the species measured in these source tests are not comprehensive enough to support speciation profile development.

Chow et al. performed source testing of TDF burning in a cement kiln during the 1999-2000 Big Bend National Park Regional Visibility Study (BRAVO). A variety of PM species were analyzed [2]. The emission samples of TDF combustion were collected from stacks of a cement kiln equipped with an electrostatic precipitator. The kiln was fueled by a mixture of 70% low sulfur Wyoming coal, 10% pet coke and 20% scrap tires. Six source tests were performed at different times, and PM<sub>2.5</sub> (particulate matter less than 2.5 µm in diameter) speciation profiles were generated based on the individual testing results. The six profiles were named as cement kiln profiles PM4323, 4324, 4325, 4326, 4327 and 4328 in the EPA SPECIATE 4.5 database [3]. The average of the six profiles is assigned as the composite cement kiln profile PM4376.

The 2016 Report on Air Emissions from Facilities Burning Waste Tires in California shows that the percentage of tires burned as part of the total fuel mix ranged from 10 to 44% for different facilities [4]. The 2015 report [5] and the 2014 report [6] both indicate that the total burned fuel consisted of 9 to 39% of scrap tires. Therefore 20% tires in the fuel mix as used in the BRAVO source tests, i.e. EPA-PM4376, is a reasonable composition that typifies TDF combustions in California.

Compared with the standard CARB PM profile format, some key species are missing from EPA-PM4376, and double-counting of species should be avoided. Thus, the following steps were carried out to convert the EPA composite profile to a CARB profile:

- NCOM (non-carbon organic matter): a factor of 1.4 was used to convert OC to OM (organic matter) [7]. NCOM is calculated by subtracting OC from OM, i.e., [NCOM] = [OM] [OC] = 1.4 × [OC] [OC] = 0.4 × [OC].
- 'Others': this species group is created to capture the metal-bound oxygen by multiplying the five geological elements (i.e., Al, Si, Ca, Fe and Ti) by their oxygen-to-metal ratios. These ratios were based on the expected oxidation state of the metals in the atmosphere (i.e., Al<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub>, CaO, Fe<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub>). The following equation is used to calculate "Others" [8]:

$$[others] = 0.89 \times [Al] + 1.14 \times [Si] + 0.40 \times [Ca] + 0.43 \times [Fe] + 0.67 \times [Ti]$$

• Double-counting species: because different analytical methods are performed on PM samples to determine more complete speciation information for multiple purposes, some species are often reported twice in the speciation profiles, such as K and K<sup>+</sup>, Na and Na<sup>+</sup>, total Cl and chloride (Cl<sup>-</sup>), total S and sulfate (SO<sub>4</sub><sup>2-</sup>). To avoid double counting in profiles, the overlap portion has to be eliminated. For example, non-sulfate sulfur, insoluble-Cl, insoluble-K and insoluble-Na are calculated and used to replace total S, total Cl, K and Na, respectively, if the values are greater than zero.

• Normalization: the weight percentages of all the species, including NCOM, 'Others', and the species created to avoid double counting, are added up to get a new total weight percentage for all the profile species; and then the weight percentage of each species is divided by the total percentage to get its normalized weight percentage for the new profile PM1301.

# 2.2 Uncontrolled open tire fire

Two recent field studies of tire fires, the Iowa City and the Spain fires, were used in this work for developing PM profiles for uncontrolled open tire burning. The field-based approach provides a real-world perspective on open tire fires.

In summer 2012, a landfill liner comprising an estimated 1.3 million shredded tires burned in Iowa City, Iowa. Downard et al. characterized the gas and particle emissions from the fire [9]. PM<sub>10</sub> (particulate matter less than 10 µm in diameter) samples were collected with a PM<sub>10</sub> air sampler on Teflon filters at 24-hour intervals, and the PM<sub>10</sub> mass was measured. PM<sub>2.5</sub> samples were collected with a multi-volume sampling apparatus equipped with a Teflon-coated aluminum cyclone operating on quartz fiber filters. PM<sub>2.5</sub> mass was estimated and derived from particle number. EC/OC were analyzed by thermal-optical transmittance and inorganic ions were measured by ion chromatography (IC). The study of the Iowa City fire discovered that EC levels in fire emissions were well above background levels while OC was not significantly enhanced. With the enhanced EC and typical OC levels, fire-impacted samples had characteristically low OC: EC ratios ranging 3.6-7.4 (compared to a background ratio 9-46). The 24-hour average PM<sub>2.5</sub> sample consisted of 29% OC, 8% EC, 13% sulfate, 8% ammonium and 4% nitrate. Although EC, OC and inorganic ions were analyzed in this study, no detailed metal species were reported.

Meanwhile, a very comprehensive measurement for metal species was conducted during a large open fire at a tire landfill in Spain from May to June in 2016 [10]. Sampling was carried out approximately 700 m downwind of the burning tires.  $PM_{10}$  samples were collected on a quartz microfiber filter. Major species were analyzed by Inductively Coupled Plasma-Automatic Emission Spectrometry (ICP-AES) and trace elements were analyzed by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The measurement indicated that sulfate accounted for 14.4% of the Spain fire  $PM_{10}$  [10], which is very close to the 13% sulfate content measured in the Iowa fire  $PM_{2.5}$  [9]. Assuming the compositions of the Spain fire  $PM_{10}$  and Iowa fire  $PM_{2.5}$  are comparable, then the weight percentage of each metal species in the Spain  $PM_{10}$  are combined with the weight percentage of EC, OC, sulfate, nitrate and ammonium in the Iowa  $PM_{2.5}$  to obtain a full list of species that can be used to generate a PM speciation profile. As there is no concern for double-counting species in these two studies, three steps are carried out for the profile development, as follows:

• NCOM: an OM/OC ratio of 1.4 was used for the combustion source [7], so  $[NCOM] = 0.4 \times [OC]$ .

• 'Others': this species group is created to capture the metal-bound oxygen by multiplying the five geological elements (i.e., Al, Si, Ca, Fe and Ti) by their oxygen-to-metal ratios. The following equation is used to calculate "Others" [8]:

$$[others] = 0.89 \times [Al] + 1.14 \times [Si] + 0.40 \times [Ca] + 0.43 \times [Fe] + 0.67 \times [Ti]$$

• Normalization: the weight percentages of all the species, including NCOM and 'Others', are added to obtain a new total weight percentage for all the profile species; and then the weight percentage of each species is divided by the new total percentage to get its normalized weight percentage for the new profile PM1302.

## 3. Results and discussion

A few metal species in the newly developed profiles are not in the existing CARB CEIDARS (California Emission Inventory Development and Reporting System) pollutant table. Their names, CAS numbers, molecular weight and assigned ARB-SAROAD codes are listed in Table 1. The new additions will be added to the CEIDARS database.

Table 1. New ARB-SAROAD codes to be added to CEIDARS POLLUTANT table

| ARB-<br>SAROAD | CAS       | Chemical Name | Formula | Molecular<br>Weight |  |
|----------------|-----------|---------------|---------|---------------------|--|
| 12138          | 7439-93-2 | Lithium       | Li      | 6.94                |  |
| 12125          | 7440-56-4 | Germanium     | Ge      | 72.61               |  |
| 12123          | 7440-54-2 | Gadolinium    | Gd      | 157.25              |  |
| 12121          | 7429-91-6 | Dysprosium    | Dy      | 162.50              |  |
| 12120          | 7440-52-0 | Erbium        | Er      | 167.26              |  |
| 12122          | 7440-64-4 | Ytterbium     | Yb      | 173.04              |  |
| 12127          | 7440-58-6 | Hafnium Hf    |         | 178.49              |  |
| 12174          | 7440-29-1 | Thorium       | Th      | 232.04              |  |

The details of the new profiles PM1301 (controlled tire combustion) and PM1302 (uncontrolled open tire fire) are listed in Appendix Table 1 and Table 2, respectively. Since particle-size-specific chemical composition data are not available, a homogeneous chemical composition is assumed for all PM size ranges. That is, the chemical speciation profiles of TPM,  $PM_{10}$  and  $PM_{2.5}$  are assumed to be the same.

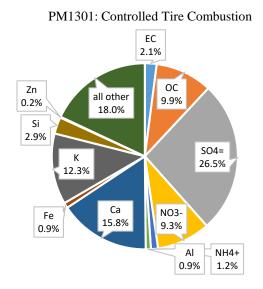

The speciation profiles show that sulfate, Ca, K, OC, and nitrate are major species in particles emitted from controlled tire combustion (PM1301); while OC, sulfate and Ca contribute more than other species in the particles produced from uncontrolled burning (PM1302). Among the heavy metal species analyzed, Zn was detected at significantly high levels. In PM1302, Zn is about 6.3% of the PM mass. Zn and S are often associated with tire wear emissions. This is because sulfur compound and oxides of Zn, Ca, Pb and Mg are added to accelerate vulcanization, yielding concentrations of S and Zn within 1-2% of total PM concentrations from bulk tire burning [11].

Figure 1 shows pie charts of the two profiles with their major species. Compared to PM1301 (controlled tire combustion), the contents of EC and OC in PM1302 (open tire fire) are 2 to 3 times higher. Sulfate is the most abundant species (26.5%) in PM1301, but it is less than half of that value in PM1302. On the other hand, PM1302 contains a very high content of Zn (6.3%) compared to PM1301 (0.2%). One factor causing the differences between PM1301 and PM1302 is that only 20% of the test fuel in the combustors is TDF while scrap tires were the sole fuel burned in the open fires. The combustion conditions, for example, complete vs. incomplete, and controlled vs. uncontrolled, also result in different emission compositions.

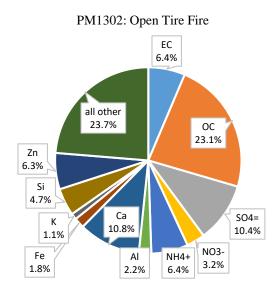

Because size distribution data are not available for the newly developed profiles, the size fractions of the existing PM130 (Solid material combustion) are used for PM1301 (Controlled tire combustion) and the size fractions of the existing PM462 (Waste burning) are used for PM1302 (Uncontrolled tire burning) as shown in Table 2.

Table 2. PM profile size fractions

|        | PM <sub>10</sub> /TPM | PM <sub>2.5</sub> /TPM |
|--------|-----------------------|------------------------|
| PM1301 | 0.997                 | 0.927                  |
| PM1302 | 0.9825                | 0.9316                 |







#### **References:**

- 1. *Tire Management Overview*. 2018 [cited 2018 September 21]; Available from: <a href="https://www.calrecycle.ca.gov/tires/overview">https://www.calrecycle.ca.gov/tires/overview</a>.
- 2. Chow, J., J. Watson, and L.W.A. Chen, *Contemporary inorganic and organic speciated particulate matter source profiles for geological material, motor vehicles, vegetative burning, industrial boilers, and residential cooking.* 2006.
- 3. *SPECIATE 4.5*, 2016, USEPA, *Accessed*: March, 2018.
- 4. 2016 Report on Air Emissions from Facilities Burning Waste Tires in California, 2016, California Air Resources Board: Sacramento.
- 5. 2015 Report on Air Emissions from Facilities Burning Waste Tires in California, 2015, California Air Resources Board.
- 6. 2014 Report on Air Emissions from Facilities Burning Waste Tires in California, 2014, California Air Resources Board.
- 7. Reff, A., et al., *Emissions Inventory of PM2.5 Trace Elements across the United States*. Environmental Science & Technology, 2009. **43**(15): p. 5790-5796.
- 8. Allen, P., Developing PM Species Profiles for Emission Inventory, 2008.
- 9. Downard, J., et al., *Uncontrolled combustion of shredded tires in a landfill Part 1: Characterization of gaseous and particulate emissions.* Atmospheric Environment, 2015. **104**: p. 195-204.
- 10. Artíñano, B., et al., *Outdoor and indoor particle characterization from a large and uncontrolled combustion of a tire landfill.* Science of The Total Environment, 2017. **593-594**: p. 543-551.
- 11. Shakya, P.R., et al., *Studies and Determination of Heavy Metals in Waste Tyres and their Impacts on the Environment.* 2006, 2006. **7**(2).

# Appendix

Table 1. Profile PM1301: Controlled tire combustion

| Consider Manager          | CAROAD   | Weight Percentage (%) |                  |                   |
|---------------------------|----------|-----------------------|------------------|-------------------|
| Species Name              | SAROAD - | TPM                   | PM <sub>10</sub> | PM <sub>2.5</sub> |
| Aluminum                  | 12101    | 0.893321              | 0.893321         | 0.893321          |
| Ammonium                  | 12301    | 1.230675              | 1.230675         | 1.230675          |
| Antimony                  | 12102    | 0.000842              | 0.000842         | 0.000842          |
| Arsenic                   | 12103    | 0.000589              | 0.000589         | 0.000589          |
| Barium                    | 12107    | 0.018863              | 0.018863         | 0.018863          |
| Bromine                   | 12109    | 0.037559              | 0.037559         | 0.037559          |
| Cadmium                   | 12110    | 0.000758              | 0.000758         | 0.000758          |
| Calcium                   | 12111    | 15.839273             | 15.839273        | 15.839273         |
| Chloride                  | 12203    | 0.739297              | 0.739297         | 0.73929           |
| Chromium                  | 12112    | 0.008000              | 0.008000         | 0.008000          |
| Cobalt                    | 42101    | 0.002021              | 0.002021         | 0.00202           |
| Copper                    | 12114    | 0.018442              | 0.018442         | 0.018442          |
| Elemental Carbon          | 12116    | 2.056963              | 2.056963         | 2.056963          |
| Indium                    | 12131    | 0.007242              | 0.007242         | 0.007242          |
| Iron                      | 12126    | 0.928690              | 0.928690         | 0.928690          |
| Lead                      | 12128    | 0.023916              | 0.023916         | 0.023910          |
| Magnesium                 | 12140    | 0.030148              | 0.030148         | 0.030148          |
| Manganese                 | 12132    | 0.106276              | 0.106276         | 0.10627           |
| Mercury                   | 12142    | 0.000084              | 0.000084         | 0.000084          |
| Molybdenum                | 12134    | 0.001600              | 0.001600         | 0.001600          |
| Nickel                    | 12136    | 0.012969              | 0.012969         | 0.012969          |
| Nitrate                   | 12306    | 9.306525              | 9.306525         | 9.30652           |
| Organic Carbon            | 11102    | 9.892135              | 9.892135         | 9.89213           |
| Non-carbon Organic Matter | 11103    | 3.956854              | 3.956854         | 3.95685           |
| Palladium                 | 12151    | 0.000421              | 0.000421         | 0.00042           |
| Potassium Ion             | 65312    | 10.565073             | 10.565073        | 10.56507          |
| Potassium-insoluble       | 12182    | 1.768621              | 1.768621         | 1.76862           |
| Rubidium                  | 12176    | 0.070233              | 0.070233         | 0.07023           |
| Selenium                  | 12154    | 0.004632              | 0.004632         | 0.004632          |
| Silicon                   | 12165    | 2.885020              | 2.885020         | 2.885020          |
| Silver                    | 12166    | 0.002779              | 0.002779         | 0.002779          |
| Sodium Ion                | 12181    | 1.323055              | 1.323055         | 1.32305           |
| Sodium-insoluble          | 12186    | 0.308721              | 0.308721         | 0.30872           |

| Species Name       | GARGAR   | Weight Percentage (%)                |            |            |
|--------------------|----------|--------------------------------------|------------|------------|
|                    | SAROAD - | TPM PM <sub>10</sub> PM <sub>2</sub> |            |            |
| Strontium          | 12168    | 0.077391                             | 0.077391   | 0.077391   |
| Sulfate            | 12403    | 26.469442                            | 26.469442  | 26.469442  |
| Non-sulfate sulfur | 12404    | 0.211541                             | 0.211541   | 0.211541   |
| Thallium           | 12173    | 0.002021                             | 0.002021   | 0.002021   |
| Tin                | 12160    | 0.005474                             | 0.005474   | 0.005474   |
| Titanium           | 12161    | 0.117560                             | 0.117560   | 0.117560   |
| Vanadium           | 12164    | 0.014232                             | 0.014232   | 0.014232   |
| Yttrium            | 12183    | 0.001432                             | 0.001432   | 0.001432   |
| Zinc               | 12167    | 0.154782                             | 0.154782   | 0.154782   |
| Zirconium          | 12185    | 0.006737                             | 0.006737   | 0.006737   |
| Others             | 12999    | 10.897791                            | 10.897791  | 10.897791  |
| Total              |          | 100.000000                           | 100.000000 | 100.000000 |

Table 2. Profile PM1302: Open tire burning

| Cracing Name              | SAROAD - | Weight Percentage (%) |                  |                   |
|---------------------------|----------|-----------------------|------------------|-------------------|
| Species Name              |          | TPM                   | PM <sub>10</sub> | PM <sub>2.5</sub> |
| Aluminum                  | 12101    | 2.154441              | 2.154441         | 2.154441          |
| Ammonium                  | 12301    | 6.384877              | 6.384877         | 6.384877          |
| Antimony                  | 12102    | 0.002953              | 0.002953         | 0.002953          |
| Arsenic                   | 12103    | 0.001197              | 0.001197         | 0.001197          |
| Barium                    | 12107    | 0.034478              | 0.034478         | 0.034478          |
| Beryllium                 | 12105    | 0.000160              | 0.000160         | 0.000160          |
| Bismuth                   | 12106    | 0.000080              | 0.000080         | 0.000080          |
| Cadmium                   | 12110    | 0.000479              | 0.000479         | 0.000479          |
| Calcium                   | 12111    | 10.780729             | 10.780729        | 10.780729         |
| Cerium                    | 71111    | 0.002315              | 0.002315         | 0.002315          |
| Cesium                    | 12118    | 0.000399              | 0.000399         | 0.000399          |
| Chromium                  | 12112    | 0.005188              | 0.005188         | 0.005188          |
| Cobalt                    | 12113    | 0.108144              | 0.108144         | 0.108144          |
| Copper                    | 12114    | 0.050361              | 0.050361         | 0.050361          |
| Dysprosium                | 12121    | 0.000160              | 0.000160         | 0.000160          |
| Elemental Carbon          | 12116    | 6.384877              | 6.384877         | 6.384877          |
| Erbium                    | 12120    | 0.000080              | 0.000080         | 0.000080          |
| Gadolinium                | 12123    | 0.000192              | 0.000192         | 0.000192          |
| Gallium                   | 12124    | 0.000559              | 0.000559         | 0.000559          |
| Germanium                 | 12125    | 0.001038              | 0.001038         | 0.001038          |
| Hafnium                   | 12127    | 0.000160              | 0.000160         | 0.000160          |
| Iron                      | 12126    | 1.786233              | 1.786233         | 1.786233          |
| Lanthanum                 | 12146    | 0.001437              | 0.001437         | 0.001437          |
| Lead                      | 12128    | 0.014765              | 0.014765         | 0.014765          |
| Lithium                   | 12138    | 0.002634              | 0.002634         | 0.002634          |
| Magnesium                 | 12140    | 0.818278              | 0.818278         | 0.818278          |
| Manganese                 | 12132    | 0.033361              | 0.033361         | 0.033361          |
| Molybdenum                | 12134    | 0.018277              | 0.018277         | 0.018277          |
| Neodymium                 | 12144    | 0.003512              | 0.003512         | 0.003512          |
| Nickel                    | 12136    | 0.005108              | 0.005108         | 0.005108          |
| Niobium                   | 12147    | 0.000479              | 0.000479         | 0.000479          |
| Nitrate                   | 12306    | 3.192439              | 3.192439         | 3.192439          |
| Organic Carbon            | 11102    | 23.145180             | 23.145180        | 23.145180         |
| Non-carbon Organic Matter | 11103    | 9.258072              | 9.258072         | 9.258072          |
| Phosphorus                | 12152    | 0.174148              | 0.174148         | 0.174148          |
| Potassium                 | 12180    | 1.060017              | 1.060017         | 1.060017          |

| Species Name | CAROAD | Weight Percentage (%)   |            |                   |
|--------------|--------|-------------------------|------------|-------------------|
|              | SAROAD | TPM PM <sub>10</sub> PM |            | PM <sub>2.5</sub> |
| Praseodymium | 12155  | 0.000319                | 0.000319   | 0.000319          |
| Rubidium     | 12176  | 0.007343                | 0.007343   | 0.007343          |
| Samarium     | 12190  | 0.000239                | 0.000239   | 0.000239          |
| Scandium     | 12104  | 0.000239                | 0.000239   | 0.000239          |
| Selenium     | 12154  | 0.000160                | 0.000160   | 0.000160          |
| Silicon      | 12165  | 4.738577                | 4.738577   | 4.738577          |
| Sodium       | 12184  | 0.355223                | 0.355223   | 0.355223          |
| Strontium    | 12168  | 0.068238                | 0.068238   | 0.068238          |
| Sulfate      | 12403  | 10.375425               | 10.375425  | 10.375425         |
| Thorium      | 12174  | 0.000431                | 0.000431   | 0.000431          |
| Tin          | 12160  | 0.002953                | 0.002953   | 0.002953          |
| Titanium     | 12161  | 0.191323                | 0.191323   | 0.191323          |
| Tungsten     | 12119  | 0.000319                | 0.000319   | 0.000319          |
| Uranium      | 12179  | 0.000231                | 0.000231   | 0.000231          |
| Vanadium     | 12164  | 0.003033                | 0.003033   | 0.003033          |
| Ytterbium    | 12122  | 0.000080                | 0.000080   | 0.000080          |
| Yttrium      | 12183  | 0.000878                | 0.000878   | 0.000878          |
| Zinc         | 12167  | 6.295728                | 6.295728   | 6.295728          |
| Zirconium    | 12185  | 0.004469                | 0.004469   | 0.004469          |
| Others       | 12999  | 12.527985               | 12.527985  | 12.527985         |
| Total        |        | 100.000000              | 100.000000 | 100.000000        |