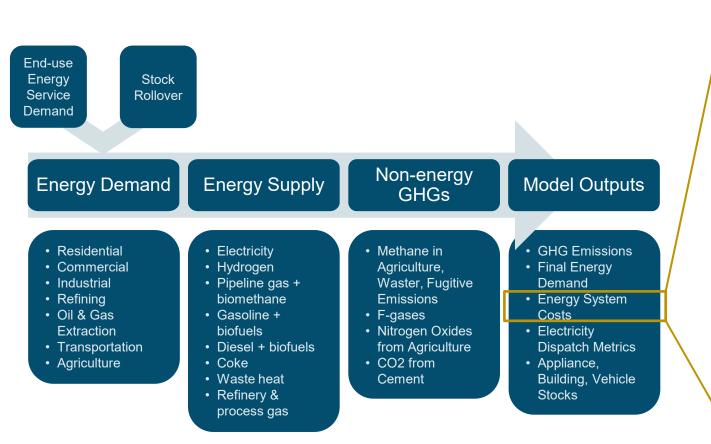
CARB Draft Scoping Plan: AB32 Source Emissions Initial Modeling Results

Costs

April 20, 2022

Energy+Environmental Economics


Amber Mahone, Partner Jessie Knapstein, Senior Managing Consultant Gabe Mantegna, Senior Consultant Vivan Malkani, Consultant

PATHWAYS Cost Modeling

Energy+Environmental Economics PATHWAYS model

California economy-wide energy and greenhouse gas scenarios. User-defined, bottom-up approach which captures interactions between sectors

Annualized incremental cost of energy infrastructure (stocks) compared to BAU

- Transportation: light-, medium- & heavy-duty vehicles, vehicle chargers, panel upgrades, planes, trains, etc.
- Buildings: lighting, water heaters, space heaters, cooking, clothes drying, refrigeration, panel upgrades, etc.
- Electricity generation: revenue requirement of all electric assets including distribution and transmission upgrade needs

Annual incremental fuel savings and costs (efficiency and demand changes) compared to BAU

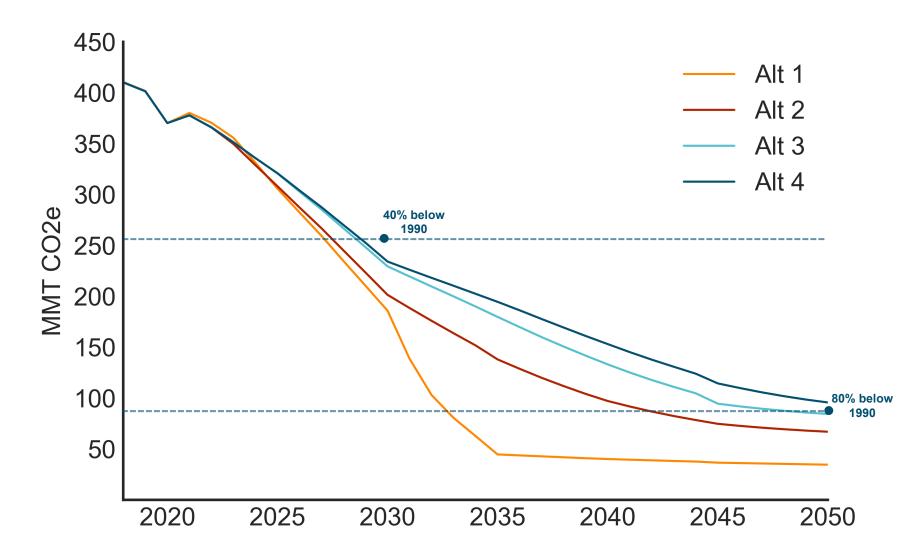
 Electricity, hydrogen, gasoline, diesel, renewable diesel, natural gas, biofuel, biomethane, sustainable aviation fuel, non-energy methane & HFCs, etc.

+ Excluded:

- Macroeconomic impacts (GDP, jobs, price responsiveness)
- Health benefits of reduced criteria pollutants

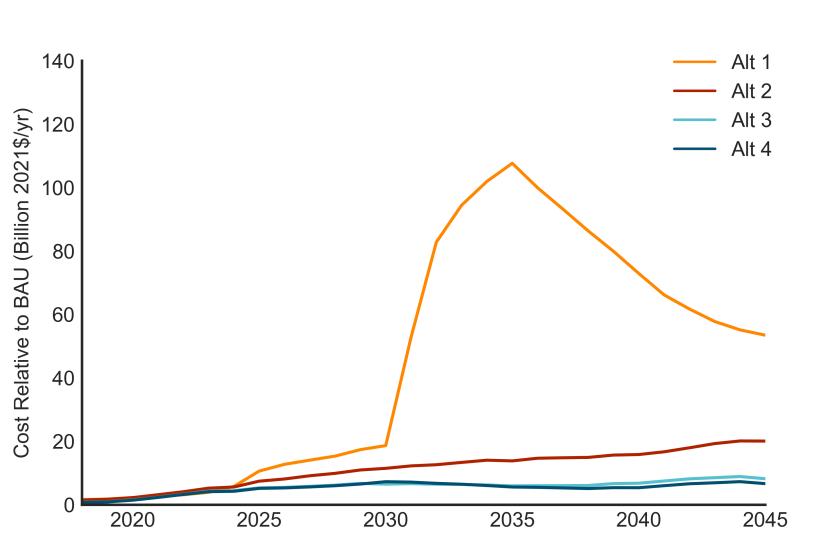
Η

Key Cost Data Sources


Transportation	<i>LDV</i> – 2020 Mobile Source Strategy, CARB, 2021 MHDV – CA Institute of Transportation Studies, 2021	Cost for Vehicle Miles Traveled (VMT) Reduction Measures not Included	 Off-road – <u>H2 rail and ships:</u> U.S. DOE Hydrogen and Fuel Cells Program <u>Electric rail:</u> Nature Energy Publications <u>H2 aviation</u>: Hydrogen-Powered Aviation; prepared by McKinsey and co. 	 EV Charging – California Electric Vehicle Infi Project (CALeVIP) CEC AB 2127 Electric Vehicle Infrastructure Assessment 20 CARB Advanced Clean Truck 	le Charging 021
Buildings	Residential Space & Water Electrification in California, E	Heating – Residential Building 3, 2019	Commercial Space & Water Heating – <i>EIA AEO 2021</i>	Other end uses – <i>EIA AEO</i> 20	021
Industry	Energy efficiency – CARB internal analysis consistent with 2017 Scoping Plan	 Petroleum refining, Oil & Gas E CARB internal analysis Blending Hydrogen into Natural 	Extraction and Transmission – Gas Pipeline Networks; NREL 2010	Carbon Capture & Sequestra – Global CCS Institute, 2017 Industrial Electrification Cap are not Included	
Fuels	Fossil fuels – EIA AEO 2021	H2 – The Challenge of Retail Gas in California's Low Carbon Future E3 & UC Irvine for CEC, 2020		Biomethane - Institute of Trans Studies, UC Davis, 2016	sportation
Methane	Organic Waste – Short-Lived Strategy, CARB, March 2017	d Climate Pollutant Reduction	Dairy and Livestock – Feasibility of Rene Carbon Substitute, A. M. Jaffe, Institute of	•	
Hydrofluorocarbons (HFCs)	Transportation – CARB Transport Refrigeration Unit Regulation, 2021		ns: ICF International 2016; CEC AB 3232 dock HFC Regulation Initial Statement of Reasons, IEPR Building Decarbonization		
Carbon Dioxide Removal (CDR)	Various Publications: LLNL, J	January 2020; Science and Techno	logy, 2021; Joule; Energy Futures Initiative an	d Stanford University, October 2	020
Energy+Environmental Economics					3

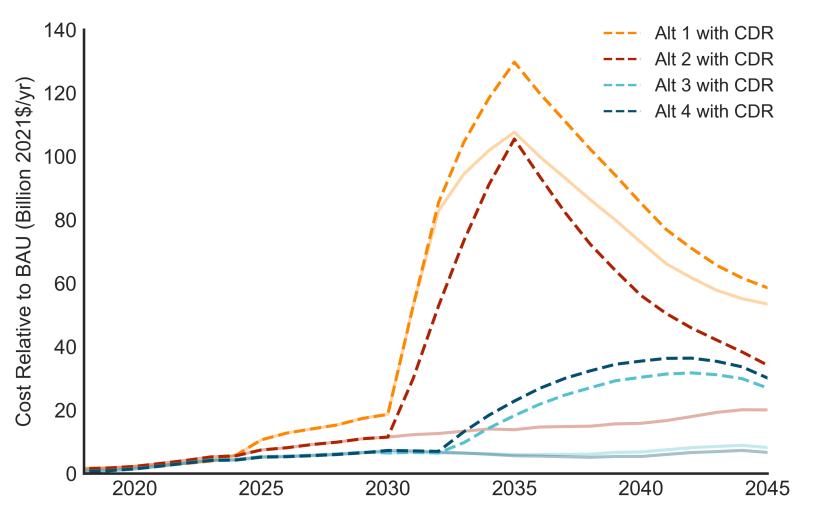
+ Scoping Plan Scenarios:

- Alternative 1 "Alt 1": Carbon neutral by <u>2035</u>. Nearly complete phaseout of combustion, <u>limited</u> reliance on engineered carbon removal, restricted applications for biomass derived fuels, and ambitious innovation in technology and aggressive consumer adoption trends (e.g. electric aviation adoption and 100% electrification by 2035).
- Alternative 2 "Alt 2": Carbon neutral by <u>2035</u>. Use of full suite of technology options, including <u>heavy</u> reliance on engineered carbon removal.
- Alternative 3 "Alt 3": Carbon neutral by <u>2045</u>. Use of broad portfolio of existing and emerging fossil fuel alternatives and alignment with statutes and Executive Orders
- Alternative 4 "Alt 4": Carbon neutral by <u>2045</u>. Use existing and emerging technologies, slower rate of clean technology and fuel deployment and consumer adoption. Reflects a <u>higher reliance on</u> <u>engineered carbon removal</u>.
- + Reference Business-as-Usual (BAU) "BAU Reference": Aligns with current trends and includes the estimated impact of all current regulations. Reflects our best estimate of what will happen with no further policy intervention



- Each Alternative meets the 2030, 40% below 1990 target
- All Scoping Plan Alternatives, except Alternative 4, meet the 2050 80% below 1990 target
- All Alternatives will need to rely on carbon dioxide removal (CDR) to achieve carbon neutrality by 2035, for Alt 1 and 2, and 2045, for Alt 3 and 4

Emissions shown after CCS, before CDR


Total Costs Relative to Business-as-Usual (BAU)*

- Pre-CDR costs of Alternatives reflect the rate and scale of adoption of clean technologies
- Alternative 1 has aggressive measures in 2035 including retiring and replacing all ICE vehicles with ZEVs and all gas appliances with electric appliances
- Alts 3 & 4 have similar cost trajectories pre-CDR

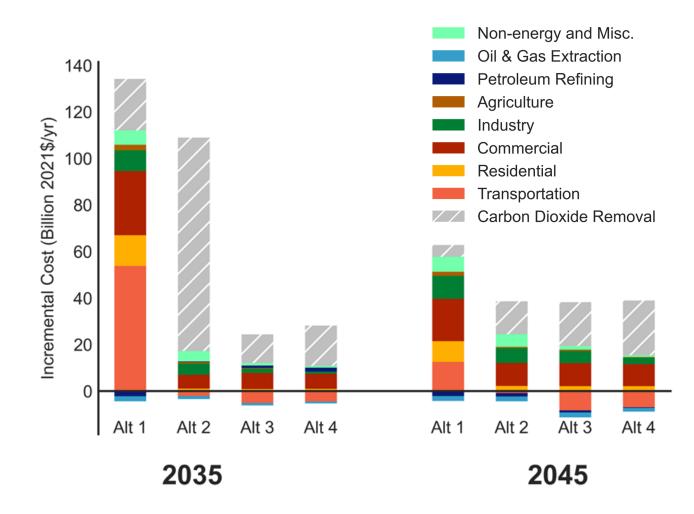
*Costs shown before CDR

Total Costs Relative to Business-as-Usual (BAU)

- Pre-CDR costs of Alternatives reflect the rate and scale of adoption of clean technologies
- Alternative 1 has aggressive measures in 2035 including retiring and replacing all ICE vehicles with ZEVs and all gas appliances with electric appliances
- Alts 3 & 4 have similar cost trajectories pre-CDR
- Alternative 1 and 2 have the same 2035 Carbon Neutral target, but Alternative 2 relies heavily on CDR
- CDR needs increase as Alternatives 3 and 4 approach 2045, but CDR costs drop overtime so total cost increase is mitigated
- Cumulative costs of Alternatives 1 and 2 in 2045 is ~2-4 times the cost of Alternatives 3 and 4

Energy+Environmental Economics

+ Transportation


- Alternative 1 incurs increased costs for early retirement of ICE vehicles by 2035 and stock purchases of ZEVs in 2035 and 2045
- Alternatives 2 4 see cost savings reflective of fuel savings net of costs from ZEV stocks and electricity and hydrogen use
- Alternative 2 has additional costs in 2045 due to MHDV ICE retirements and replacement with ZEVs

+ Commercial & Residential

- Commercial electrification stock and energy costs comprise a large cost in all scenarios
- Residential and commercial appliance early retirement and replacement in Alternative 1 lead to increased costs

+ Industry

- Each Alternative reflects fuel cost savings due to electrification and increased costs for electricity
- Incremental industrial stock costs were not included and would significantly increase costs to achieve ambitious decarbonization measures

Energy+Environmental Economics

Thank You

Vivan.Malkani@ethree.com

