Analysis of Weekday/Weekend Differences in Ambient Particulate Nitrate Concentrations and Formation in Southern California

Presentation Prepared for CARB Weekend Effect Workshop
February 20, 2002

C. L. Blanchard
Envair

Sponsored by Coordinating Research Council
Particulate nitrate derives from NOx – highly nonlinear

➢ Chemical transformation - dependent on VOC and NOx concentrations:
 NO to NO2 to HNO3 (daytime and nighttime reactions)

➢ Chemical equilibrium - favors particulate nitrate at lower temperatures,
 higher RH - may be limited by NH3 (if low NH3 or high sulfate):
 \[\text{NH}_3(g) + \text{HNO}_3(g) \leftrightarrow \text{NH}_4\text{NO}_3(p) \]

➢ Coastal environments:
 \[\text{NaCl(p)} + \text{HNO}_3(g) \rightarrow \text{NaNO}_3(p) \]
DATABASES

• Special studies: usually short-term but intensive measurements

 Carbon Species Methods Comparison Study (CSMCS) - 1986
 Southern California Air Quality Study (SCAQS) - 1987
 California Acid Deposition Monitoring Program (CADMP) – 1988-94
 PM10 Enhancement Program (PTEP) – 1995-96
 Southern California Ozone Study (SCOS) - 1997

• Routine data: long term (statistical power), 1980-99 but data limitations

 CO, NOx, O3,
 TSP, TSP nitrate and sulfate,
 PM10, PM10 nitrate and sulfate
 VOC data: limited, summer, 1994 - 99
Particulate nitrate formation is not usually NH3 limited in southern California

Particulate nitrate response calculated using a thermodynamic equilibrium model (SCAPE2)
Response of particulate nitrate to reductions of NH3 or HNO3 depends upon excess ammonia.

California data show excess ammonia at most times and places.

Particulate nitrate response calculated using SCAPE2.
If PM nitrate formation is not NH3-limited, is another factor limiting?

Yes – something is limiting, because PM nitrate is a small fraction of NOx

NOx reservoir is large

Note: PM nitrate scaled by 10X in plots
Gas-phase box-model simulations: 24-hour isopleths – ridgeline separates VOC and NOx sensitive regions

- HNO₃ isopleths more L-shaped
- HNO₃ less likely to increase than O₃, PAN when NOx decreases
- HNO₃ may not decrease when NOx decreases

Calculated using OZIPR with CALL mechanism (Lurmann et al., 1987) for December 21, 37N, clear sky conditions
CSMCS – 1986
FTIR PAN and HNO3
Citrus College (~2 mi east of Azusa)
Elevated WE ozone and PAN
Hourly differences but little overall
(24-hour) change in HNO3 from
WD to WE
SCAQS – 1987

TDLAS HNO3 at Claremont

Hourly differences but little overall (24-hour) change in HNO3 from WD to WE
CADMP Evaluation – 1993
Azusa
Luminol PAN and TDLAS HNO3
Elevated WE ozone and PAN
Little overall change in HNO3 from WD to WE
(Possible spectral interferences with TDLAS HNO3?)
If there are no significant WD/WE HNO3 differences, will WD/WE nitrate levels differ?

PTEP data show no significant differences between seasonal mean WD and WE PM2.5 nitrate concentrations.
CADMP DATA

Data characteristics

Sites: Azusa, Los Angeles, Long Beach
Period: September 1988 – September 1994
Sample collection: Once per 6 days
Time resolution: 12 hours (6 am – 6 pm or 6 pm – 6 am)
Size fraction: PM10 and PM2.5
Gas-phase: SO2, NO2, NH3, HNO3
Redundancy: HNO3 denuder system and nondenuded
Data analysis: split by season (Oct-Mar or Apr-Sep) and day/night

Results

All sites – significant (p < 0.01) daytime decrease of NO2 from WD to WE
- no significant change in HNO3 or particulate nitrate
– few significant differences at night
Azusa - statistically significant (p < 0.01) decreases of NO2, PM10, PM2.5
Significant WE decreases of NO2, PM10 mass, PM2.5 mass – but not PM nitrate

Azusa (CADMP)
April - September
1988-94
Daytime (6 am - 6 pm)

Dry season
Day

Significant difference (p < 0.01)
Significant WE decreases of NO2, PM10 mass, PM2.5 mass – but not PM nitrate

Azusa (CADMP)
October - March
1988-94
Daytime (6 am - 6 pm)

Wet season
Day

Significant difference (p<0.01)
ROUTINE DATA

Data characteristics
Sites: South Coast, South Central Coast, Mojave Desert
Period: 1980 – 1999
Sample collection: Once per 6 days
Time resolution: 24hours (midnight - midnight)
Gas phase: match CO, NOx, O3 to 24-hour PM time resolution on PM days
Size fraction: PM10 and TSP
Data analysis: split by season (Oct-Mar or Apr-Sep)
10+ years data at 70% completeness (21 days/season/year)
15 CO, 17 NOx, 25 O3, 9 PM10, 26 TSP sites

Results
Sparse data, high variability. Seasonality and time trends.
Significant (p < 0.01) decreases of CO, NOx, PM10, TSP from WD to WE
Significant (p < 0.01) increases of ozone from WD to WE
Nonsignificant and variable changes of PM and TSP nitrate
Statistical test for differences in 24-hour mean WD and WE concentrations – t-tests by site, stratified by year – show:

> Significantly lower WE CO, NOx, PM10, TSP
> Significantly higher WE ozone and CO/NOx
> No significant change in nitrate – mixed higher & lower
> Increases in ratios of nitrate/NOx or nitrate/mass

<table>
<thead>
<tr>
<th>Wet season (Oct-Mar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of sites</td>
</tr>
<tr>
<td>Significance at p < 0.01</td>
</tr>
</tbody>
</table>
WE NMOC concentrations tend to be lower than weekday NMOC concentrations.

Differences are not statistically significant.
Mean WD-WE PM10 nitrate decrease ~ half NOx decrease
No TSP nitrate decrease

Graph shows averages of sites’ percent changes
Error bars are averages of sites’ 1 SE
CONCLUSION

> Particulate nitrate formation is not usually NH3 limited in southern California

> Mean particulate nitrate and HNO3 levels are low relative to NOx

> WE particulate nitrate levels not responsive to lower emissions:

 Significantly lower WE NO2, NOx, CO, PM10 mass, TSP mass

 Lower WE NMOC – not statistically significant

 Significantly higher 24-hour WE ozone

 Variable and nonsignificant WD-WE changes in 12-24 hour nitrate, HNO3

> Downward trends in particulate nitrate over time (other studies)

> Does particulate nitrate reduction depend on lowering VOC emissions?