CARB LOW NO\textsubscript{x} DEMONSTRATION PROGRAM - UPDATE

Christopher Sharp, Southwest Research Institute
HDDECS - Gothenburg
September 21, 2016
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASC</td>
<td>Ammonia Slip Catalyst</td>
</tr>
<tr>
<td>AT</td>
<td>Aftertreatment</td>
</tr>
<tr>
<td>DOC</td>
<td>Diesel Oxidation Catalyst</td>
</tr>
<tr>
<td>DPF</td>
<td>Diesel Particular Filter</td>
</tr>
<tr>
<td>EHC</td>
<td>Electrically Heated Catalyst</td>
</tr>
<tr>
<td>EO</td>
<td>Engine-out</td>
</tr>
<tr>
<td>HD1</td>
<td>Heated Dosing 1 (full flow)</td>
</tr>
<tr>
<td>HD2</td>
<td>Heated Dosing 2 (partial flow)</td>
</tr>
<tr>
<td>LO-SCR</td>
<td>Light-off SCR (close coupled)</td>
</tr>
<tr>
<td>MB</td>
<td>Mini-burner</td>
</tr>
<tr>
<td>NH3</td>
<td>Gaseous NH3 dosing</td>
</tr>
<tr>
<td>PAG</td>
<td>Program Advisory Group</td>
</tr>
<tr>
<td>PNA</td>
<td>Passive NOx Adsorber</td>
</tr>
<tr>
<td>SCR</td>
<td>Selective Catalyst Reduction</td>
</tr>
<tr>
<td>SCRF</td>
<td>SCR on Filter</td>
</tr>
<tr>
<td>TC</td>
<td>Turbo-compound</td>
</tr>
<tr>
<td>DAAAC</td>
<td>Diesel Aftertreatment Accelerated Aging Cycles Consortium (SwRI)</td>
</tr>
</tbody>
</table>
Program Objectives

- Development target is to demonstrate 90% reduction from current HD NO\textsubscript{X} standards
 - 0.02 g/bhp-hr
 - Aged parts
- Solution must be technically feasible for production
- Solution must be consistent with path toward meeting future GHG standards
 - CO\textsubscript{2}, CH\textsubscript{4}, N\textsubscript{2}O
Program Engines

Diesel - 2014 Volvo MD13TC (Euro VI)
- A diesel engine with cooled EGR, DPF and SCR
 - 361kw @ 1477 rpm
 - 3050 Nm @ 1050 rpm
- Representative platform for future GHG standards for Tractor engines
- Incorporates waste heat recovery – turbo-compound (TC)

CNG – 2012 Cummins ISX12G
- A stoichiometric engine with cooled EGR and TWC
 - 250 kw @ 2100 rpm
 - 1700 Nm @ 1300 rpm
- Suitable for a variety of vocation types
Test Cycle Selection

• **Primary Cycles for Program**
 • US HD FTP – primary focus
 • WHTC – “lower temperature”
 • RMC-SET – required for GHG assessment
 • CARB Idle
 • Primary Cycles are calibration focus

• **Additional Vocational Cycles**
 • NYBC, ARB Creep, OCTA
 • Lower load operation (drayage, etc.)
 • Demonstration only (no additional calibration)
Baseline Emissions

Diesel (2014)

<table>
<thead>
<tr>
<th>Tailpipe NOx, g/hp-hr</th>
<th>FTP</th>
<th>RMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>0.14</td>
<td>0.084</td>
</tr>
<tr>
<td>SD</td>
<td>0.012</td>
<td>0.0093</td>
</tr>
<tr>
<td>COV</td>
<td>8.5%</td>
<td>11%</td>
</tr>
<tr>
<td>SD % Std</td>
<td>5.9%</td>
<td>4.6%</td>
</tr>
</tbody>
</table>

Engine-out NOx ~ 3 g/hp-hr

No tailpipe NH3, Tailpipe N₂O ~ 0.05 g/hp-hr

CNG (2012)

<table>
<thead>
<tr>
<th>Tailpipe NOx, g/hp-hr</th>
<th>FTP</th>
<th>RMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>0.115</td>
<td>0.012</td>
</tr>
<tr>
<td>SD</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>COV</td>
<td>2.7%</td>
<td>21.3%</td>
</tr>
<tr>
<td>SD % Std</td>
<td>1.5%</td>
<td>1.3%</td>
</tr>
</tbody>
</table>

Tailpipe NH₃ ~ 75-100ppm

Tailpipe CH₄ ~ 1 g/hp-hr
Example Vocational Cycle on Baseline 2014 Engine – NYBCx4

- Preconditioned with warm-up and NYBCx4 cycle before 30-min idle segment
- Note that entire cycle would be below current NTE range

- Cycle average power ~ 17kw
- EO ~ 6 g/hp-hr
- TP ~ 2.4 g/hp-hr
- 62% conversion cycle average
 - Conversion still improving at end
• Final system selection completed
• Final aging of selected system is under way (~400 of planned 1000 hours completed)
• Controls tuning and refinement in progress

• Based on aging timeline, final demonstration tests expected in October, 2016
Diesel Engine Calibration Approach

Increased Temperatures

- Modify existing engine calibration during cold-start warm-up
 - help AT light-off and reduce NO\textsubscript{x} until that time
 - EGR modifications, multiple injections, intake throttling, elevated idle speed
- Release controls to baseline calibration after AT light-off
 - maintain fuel economy and GHG
- Minimal modifications during warmed-up operation

Decreased EO NO\textsubscript{x}
Diesel Aftertreatment System Screening

Traditional Approach

- Burner
- EHC
- Fuel Dosing

- DEF
- NH₃ injection
- Heated Dosing

Advanced Approach

- Burner
- EHC
- Fuel Dosing

- DEF
- Compact mixing
- NH₃ injection
- Heated Dosing

Examined 33 out of 500 possible configurations of component and heat addition options
Screening Test Results for Diesel Aftertreatment System Configurations

Multiple potential pathways to achieve NOx emissions below 0.02 g/hp-hr
Final Technology Rankings from Screening (Incorporates stakeholder feedback)

Based on Feb 2016 workshop and Program Advisory Group stakeholder feedback

Engine cell objective was to evaluate in order until reaching a viable solution to 0.02 g/hp-hr at minimum fuel penalty / cost / complexity
Summary of Results with First AT Config. (not selected for Final Demo)

- Configuration 1 – PNA2+HD1+SCRF+SCR+ASC

 - 0.025 to 0.03 composite with original 2kw EHC-HD1
 - 0.022 to 0.025 composite with larger 6kw EHC-HD1 (additional 3% BSFC on cold-start)

- **would likely be below 0.02 for a non-TC engine**
 - More heat needed to get below 0.02 on current engine (10kw projected)

- **Advantages – simplest AT system architecture**

- **Why not select it?**
 - **Efficiency** – fuel penalty required to get below 0.02 is too large
 - 22% conversion of fuel energy to heat, likely 2.5%+ FTP composite GHG impact
 - Complexity – electrical heat at 10kw requires significant electrical system infrastructure changes
Summary of Results with Second AT Config
(not selected for Final Demo)

- Configuration 2 tested – NH3+LOSCR+PNA2+HD1+SCRF+SCR+ASC
- Long term implementation = HD2+LOSCR+PNA2+SCRF+SCR+ASC
 - multipoint dosing is required for this concept to work

- 0.022 to 0.025 composite observed using the 3” zeolite LO-SCR catalyst
 - would likely be below 0.02 on a non-TC engine

- Advantages – lower GHG penalty – on order of 1%
- Why not select it?
 - Time – requires implementation of HD2 to be practical and more development to reach robust controls – time not available to complete these efforts
 - Long term sulfur management of LO-SCR needs evaluation (time)
The next ranked item on the list was

- EHC/DOC + DEF + SCRF + SCR + ASC

We examined EHC/DOC concept in HGTR cell to look at heat generation potential

- potential was good but not sufficient for low TC-engine temperatures
- lack of PNA in this system, sufficient rapid heat potential not there for 0.02

Significant additional calibration effort to try this but low success probability for this TC engine – time was not available
Summary of Results with Third AT Config
(not selected for Final Demo)

• Configuration tested –PNA2+HD1+SCR+SCRF+SCR+ASC
 • ran HD1 at 3.5 kw heat level
 • 0.022 to 0.025 observed using the 3” zeolite LO-SCR catalyst at position shown (about 1% additional fuel penalty on cold-start over engine cal alone)
 • net GHG impact less than 6kw EHC even with increased SCRF regeneration frequency

• Advantages – lower GHG penalty than high-power EHC, simpler than LO-SCR with multi-point dosing

• Why not select it ?
 • Time – need to try larger SCR upstream of SCRF, requires more fabrication and time is not available to try different formulations from suppliers to find optimal configuration
Final AT Configuration: Mini-burner

- Primary configuration tested – PNA2+MB+SCRF+SCR+ASC
- Results on engine are well below 0.02 g/hp-hr with catalysts used for screening analysis
 - Composite ~ 0.012 g/hp-hr
- Advantages – lower GHG penalty than full EHC, less backpressure and controls complication than LO-SCR
- Impact on GHG from baseline including engine calibration
 - 2% on composite FTP – 0.5% engine cal, 0.5% SCRF regeneration, 1% mini-burner (including air)
 - hot-start optimization may reduce this some
 - < 0.5% on RMC-SET – SCRF regeneration only
Preliminary FTP Test Data Sets with Final Diesel Configuration

<table>
<thead>
<tr>
<th>Run</th>
<th>Cold</th>
<th>Hot 1</th>
<th>Hot 2</th>
<th>Hot 3</th>
<th>Composite</th>
<th>Hot Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.025</td>
<td>0.010</td>
<td>0.010</td>
<td></td>
<td>0.012</td>
<td>0.010</td>
</tr>
<tr>
<td>2</td>
<td>0.027</td>
<td>0.009</td>
<td>0.009</td>
<td>0.010</td>
<td>0.012</td>
<td>0.009</td>
</tr>
<tr>
<td>3</td>
<td>0.024</td>
<td>0.008</td>
<td>0.009</td>
<td></td>
<td>0.010</td>
<td>0.009</td>
</tr>
<tr>
<td>Average</td>
<td>0.025</td>
<td></td>
<td></td>
<td></td>
<td>0.011</td>
<td>0.009</td>
</tr>
<tr>
<td>SD</td>
<td>0.0015</td>
<td></td>
<td></td>
<td></td>
<td>0.0010</td>
<td>0.0007</td>
</tr>
</tbody>
</table>

Degreened Prior to Aging
- Engine-out NO\textsubscript{x} is 2.9 g/hp-hr
- Cold-start conversion = 99%
- Hot-start conversion = 99.7%
- N\textsubscript{2}O is 0.07 to 0.08 g/hp-hr
- Data will be updated with Final Aged parts in October...

<table>
<thead>
<tr>
<th></th>
<th>BSCO\textsubscript{2}, g/hp-hr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cold</td>
</tr>
<tr>
<td>Baseline Engine</td>
<td>574</td>
</tr>
<tr>
<td>Current with MB</td>
<td>600</td>
</tr>
<tr>
<td>% change</td>
<td>4.5%</td>
</tr>
</tbody>
</table>
Final Aging Approaches

DIESEL

- Based on SwRI DAAAC Protocol
- Thermal acceleration – full useful life of Active Regeneration events
- Chemical acceleration – increased oil consumption engine
 - 25% of FUL exposure
- 1000 total hours

CNG

- Acceleration based on Standard Bench Cycle (SBC) approach
 - Accepted for gasoline TWC aging
- Calculations based on California bus field cycle
- SBC with 90degC exotherm, LCT = 875degC
 - 137 hours at 903degC Reference Temperature
Follow On Program Scope

• Next program to follow-on from current ARB Demonstration Program already awarded
• Program focus will be Low-temperature and Low Load (urban) Vocational duty cycles

• Key Topics
 • Development of Low-Load duty cycle profiles
 • Development of a Heavy-Duty Low Load Cycle
 • Re-calibration of ARB Diesel Demonstration Engine to achieve low NO\textsubscript{x} on Low Load profiles
 • What is the impact on GHG for this kind of control?
 • Appropriate load metrics for in-use testing at Low Load
Acknowledgements

• California Air Resources Board
• Program Partners
 • Volvo
 • Manufacturers of Emission Controls Association (MECA)
 – MECA member companies who have provided emission control hardware
 • E-Controls (CNG engine controls)
• Program Advisory Group members
More Information

California ARB website
http://www.arb.ca.gov/research/veh-emissions/low-nox/low-nox.htm

SwRI Contact
Christopher Sharp
+ 001 210-522-2661
chris.sharp@swri.org
CNG Low Emissions Approach

- Replace engine controls with a system by
 - Key Components for accurate fuel control

- Catalysts supplied by MECA members
 - EHC
 - Light-off catalyst
 - Advanced TWC
 - Close-coupled catalyst
CNG Engine Final AT Configuration (Aged)

- **Final system selection**
 - Close-Coupled from the two catalyst setup for **cold start**
 - Under-floor TWC from single setup for **space velocity**

Total SVR ~ 2.4

Cold Start Emissions (Team B-Mixed, Aged)

- NO\textsubscript{x} = 0.084 g/bhp-hr
- CO = 2.026 g/bhp-hr

Hot Start Emissions (Team B-Mixed, Aged)

- NO\textsubscript{x} = 0.003 g/bhp-hr
- CO = 0.914 g/bhp-hr

(0.136 ppm average composite NO\textsubscript{x} over the FTP results in 0.015 g/bhp-hr NO\textsubscript{x})
Final CNG Calibration FTP Results (Aged parts)

- **Cold-start FTP**
 - Avg = 0.067 g/hp-hr
 - SD = 0.016 g/hp-hr

- **Hot-start FTP**
 - Avg = 0.005 g/hp-hr
 - SD = 0.003 g/hp-hr

- **Composite = 0.014 g/hp-hr**

- **Note cycle average NH₃ on FTP is ~ 25ppm**
 - This is above the design target of 10ppm but that is due to a controller shortcoming

- **Current controller does not have robust oxygen storage model (typical technology for LD)**
 - We did not have time / scope to incorporate this into current controller but it is production feasible to do so