Prioritizing Climate Change Mitigation Technologies by Cost-Effectiveness:

How do transportation options compare with other sectors?

Nic Lutsey
Ph.D. Candidate
Institute of Transportation Studies
University of California at Davis

California Air Resources Board
Chair’s Air Pollution Seminar Series
April 30, 2008
Outline

• Background: U.S. climate mitigation

• Prioritizing GHG mitigation options
 – Climate change mitigation criteria
 – Cost-effectiveness “supply curves”

• Findings
 – Transportation sector
 – All economic sectors
Background: Mitigation Policy

• Emission reduction targets
 – e.g. to 1990 GHG level by 2020, 80% below 1990 GHG level by 2050
 – 17 states and 700+ cities (represent 53% of the U.S. population)

• Emission mitigation planning
 – State GHG inventories – 42 states (93% of U.S. GHG)
 – State “Climate Action Plans” – 30 states (53% of U.S. GHG)
 – Sector-specific actions (examples)
 • Renewable electricity portfolio targets (~half of U.S. elec. generation)
 • Vehicle GHG regulations (~half of U.S. auto sales)

• Coordination – regional cooperation to establish emissions trading, common mitigation programs
 – Northeastern states (RGGI, NEG/ECP pact)
 – Western states (WCG GWI, WCI)
 – Climate Registry – coordination on consistent GHG reporting guidelines
 – Cities – U.S. Mayor’s Climate Protection Agreement
Background: Mitigation Areas

• **Sector-specific GHG mitigation action areas:**
 - **Transportation:**
 • Vehicle GHG regulation
 • Fuel standards, mandates, targets
 • VMT reduction measures
 - **Electricity generation**
 • Renewable electricity targets, standards
 • Energy efficiency resource standards
 • Fossil fuel efficiency (e.g. coal IGCC)
 • Carbon capture and storage (CCS) technology
 - **Residential and commercial buildings**
 • Appliance, lighting efficiency
 • Heating, cooling efficiency
 • Building codes
 • Distributed power generation
 - **Industry (cement, paper/pulp, chemical, refrigerant, landfill)**
 - **Agriculture (forestry, soil carbon sequestration, N2O/CH4)**
Background: Mitigation Criteria

• What criteria are most important in prioritizing mitigation actions?

• From state mitigation plans:
 – Individual action effects
 1.) GHG emission reduction potential
 2.) Implementation cost
 3.) Variable (lifetime) costs, benefits
 4.) Ancillary costs, benefits
 – Cumulative actions’ effects
 5.) GHG emission reduction potential
 6.) Costs, benefits
 7.) Multi-sector equity (e.g. vehicles vs. electricity)
Evaluating GHG Mitigation Options

- **Cost-effectiveness “supply curve” approach:**
 - Collect data for baseline and mitigation technology alternatives
 - Bundle cost, benefit, and emissions impact data in one variable
 - “Cost-effectiveness”
 - Cost-per-ton CO₂-equivalent reduced
 - Rank options by cost-effectiveness
 - Show cumulative impact at increasing cost
 - **Highlights:**
 - Actions under given $/ton cost
 - “No regrets” actions (net benefits > costs)
 - Total emission reduction goals
 (e.g., 1990 level by 2020)
Cost-Effectiveness Curve Approach

- Use in various forms
 - Initial costs only:
 - Include costs and direct benefits:
Cost-Effectiveness Curve Approach

- **Methodological Steps**
 - Literature search and screening –
 - Assess/screen technologies
 - Available data (GHG, cost, benefit)
 - Technology-based
 - Timeframe: GHG technologies to be deployed from 2010-2025
 - Cost-effectiveness curve development
 - Estimation and accumulation of cost, GHG-reduction data
 - Assume US EIA fuel prices (at 7% discount rate)
 - Develop sector-specific curves
 - Combine in multi-sector curve
 - Multi-Sector Assessment –
 - Synthesis various economic sectors’ GHG mitigation strategies and their contribution to overall US GHG emissions reductions
Technology Areas

• Sector-specific areas to analyze for GHG reductions
 – Transportation
 • Light duty vehicle efficiency (rated incremental, “on-road”, HEV)
 • Commercial truck efficiency
 • Biofuels (ethanol, biodiesel)
 • Aircraft
 – Residential and commercial buildings
 • Appliances
 • Lighting
 • Heating, ventilation, and air-conditioning (HVAC)
 • Distributed power
 – Electric power sector
 • Fossil-fuel switching (coal – to natural gas)
 • Carbon capture and sequestration (CCS)
 • Renewable (wind, solar, biomass)
 • Nuclear
 – Industry (cement, paper/pulp, chemical, refrigerant, landfill)
 – Agriculture (forestry, soil carbon sequestration, N2O/CH4)
Vehicle Technology Options

- **Incremental vehicle efficiency**
 - Engine (gasoline direct injection, variable displacement)
 - Transmission (5 and 6-speed auto, continuously variable)
 - Body, road load reduction (light-weighting, aerodynamics)

- **“On-road” fuel efficiency improvements**
 - Tire inflation, rolling resistance
 - Maintenance, low-friction oil
 - Efficient accessories, alternator

- **Advanced drivetrain technology**
 - Electrified drivetrain (HEV, PHEV, EV)
 - Fuel cell electric (hydrogen or other fuel)

- **Reducing other non-CO₂ GHGs:**
 - Air conditioning (HFC-134a)
 - Nitrous oxide (N₂O), Methane (CH₄)
Transportation

Incremental efficiency technology for light-duty vehicles:

Assumptions: vehicle life of 189k, 17 years; ~$2.35/gallon gasoline (U.S. EIA, 2007); 7% discount factor for future fuel savings. Sources: Austin, et al, 1999 (Sierra); DeCicco et al, 2001 (ACEEE); EEA, 1995; NRC 2002; Plotkin et al, 2002; Weiss, M.A., et al., 2000 (MIT)
Transportation

“On-road” efficiency technology for light-duty vehicles:

Assumptions: vehicle life of 189k, 17 years; ~$2.35/gallon gasoline (U.S. EIA, 2007); 7% discount factor for future fuel savings. Based on IEA and ECMT, 2006
Transportation

Hybrid electric vehicle technology for light-duty vehicles:

Assumptions: vehicle life of 189k, 17 years; ~$2.35/gallon gasoline (U.S. EIA, 2008); 7% discount factor for future fuel savings; 0.8 on-road fuel economy degradation factor; U.S. electricity mix

Sources: Graham et al 2001 (EPRI); Plotkin et al 2001 (ANL); Lipman and Delucchi, 2003; Weiss et al 2001 (MIT); An et al 2001; Markel et al (NREL), 2006
Transportation

Light-duty vehicles GHG cost-effectiveness curve:

- Incremental efficiency (-20% by 2020)
- Improved "on-road" efficiency shortfall (from 20% to 10%)
- Cellulosic ethanol (21% by 2030)
- Hybrid-electric vehicles (50% sales by 2025)
- A/C refrigerant (HFC-134a to CO2)

Cost effectiveness ($2008/tonne CO2e)

Cumulative GHG reduction in 2030 (million tonne CO2e/yr)
Transportation

Light duty vehicle GHG-reductions through 2030:

<table>
<thead>
<tr>
<th>Year</th>
<th>Light duty vehicle GHG emissions (million tonne CO2e/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>Reference</td>
</tr>
<tr>
<td>1995</td>
<td>Incremental fuel consumption improvement (-20% by 2020)</td>
</tr>
<tr>
<td>2000</td>
<td>'On-road' fuel consumption factor improvement (20% to 10% by 2020)</td>
</tr>
<tr>
<td>2005</td>
<td>Cellulosic ethanol increase (21% motor fuel by 2030)</td>
</tr>
<tr>
<td>2010</td>
<td>Alternative air-conditioning refrigerant (HFC-134a to CO2)</td>
</tr>
<tr>
<td>2015</td>
<td>Hybrid gasoline-electric vehicles (50% sales by 2025)</td>
</tr>
<tr>
<td>2020</td>
<td>U.S. 1990 GHG emission level</td>
</tr>
<tr>
<td>2025</td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td></td>
</tr>
</tbody>
</table>
Transportation

Commercial truck (Class 2b, Class 3-6, Class 8) GHG-reduction:

- Biodiesel (B5 by 2020)
- Cellulosic ethanol (21% by 2030)

Based on An et al 2000; Langer, 2004; Vyas et al 2002; Schaefer and Jacoby, 2006; Muster, 2001; Lovins et al, 2004
Building Sector

Technology areas in residential and commercial buildings:
- Appliance efficiency (18 technologies)
- Building shell efficiency (13 technologies)
- HVAC efficiency (10 technologies)
- Lighting efficiency (10 technologies)
- Distributed power (2 technologies)

![Graph showing Building Sector GHG reductions in 2030](image)

![Graph showing Building GHG emissions](image)
Electricity Generation

Electricity generation GHG-reductions:

- Coal-to-gas shift
- Nuclear
- Wind
- Coal IGCC
- Biomass
- Coal CCS
- Natural gas CCS
- Solar thermal
- Solar photovoltaic

GHG reduction in 2030
(million tonne CO$_2$e/year)

Cost effectiveness
(2008$/tonne CO$_2$e)

Lifetime cost accounting
Industry Sector

GHG abatement in other industrial sectors:

Technology Areas:
- High-GWP “F gases”
- Steel and iron
- Cement
- Combined heat and power (CHP)
- Landfill gas management
- Paper and pulp
Agricultural Sector

GHG abatement in agriculture and forestry:

Areas included:

- Afforestation
- Forest management
- Soil carbon sequestration
- Biofuel offsets (biomass for transp. Fuels, power plants)
- Reduced fossil fuel inputs
- Livestock manure management (enteric ferm. and manure CH₄)
- N₂O-related soil management strategies

![Graph showing GHG reduction in 2030 (million tonne CO₂e/yr) vs. Cost effectiveness ($/tonne CO₂ e)](chart.png)
Multi-Sector GHG Abatement

• **Issues in integrating GHG abatement measures**
 - Interaction effects, or “double counting”
 - Cross-sector linkages
 • Building sector efficiency – electricity generation technologies
 • Agriculture sector biomass production – transportation/electricity biomass usage

• **Handling of data**
 - Choose mutually exclusive GHG-reduction measures
 - Adjust baseline emissions characteristics for measures that interact (and recalculate GHG emission reductions and cost effectiveness ratios)
 - Selection of studies and technologies to be consistent across sectors
Multi-Sector GHG Abatement

Synthesis of all sectors’ GHG cost-effectiveness curves:

Technologies included:
- Automobile efficiency
- Truck efficiency
- Biofuels
- Aircraft efficiency
- Renewable electricity
- Carbon capture and storage
- Nuclear power
- “Clean coal” IGCC
- Appliance
- Building shell
- HVAC efficiency
- Distributed power
- Livestock management
- Landfill gas-to-energy
- Hydrofluorocarbon
Impact of energy savings in GHG cost-effectiveness curves (Why aren’t “no regrets” technologies more widely adopted?):

“Efficiency gap” factors:
- Slow diffusion of technologies
- Information availability
- Consumers do not value or consider future energy savings
- Principal-agent problem (purchaser ≠ energy-saver)
- Other technology costs/limitations that are not included
- Institutional barriers

GHG reductions in 2030, all sectors (million tonne CO$_2$e/year)
Multi-Sector GHG Abatement

What is the impact of the lower cost mitigation measures?

Synthesis of all sectors’ technologies <$50/tonne CO₂e:

- 43% below 2030 baseline
- 16% below 1990 level in 2030
Multi-Sector GHG Abatement

Synthesis of all sectors’ GHG cost-effectiveness curves (selected transportation measures highlighted):

- HD truck (Class 7-8) efficiency
- LDV incremental efficiency
- LDV "on-road" efficiency
- MD truck (Class 3-6) efficiency
- Cellulosic ethanol
- LDV HEV efficiency
- A/C refrigerant

GHG reductions in 2030, all sectors (million tonne CO2e/year)

Reductions to reach 10% below 1990 GHG level
Transportation GHG Abatement

Transportation GHG-reduction through 2050:

Reference
- With LDV incremental efficiency reductions
- With LDV "on-road" efficiency (and above) reductions
- With cellulosic ethanol (and above) reductions
- With A/C refrigerant replacement (and above) reductions
- With LDV hybrid efficiency (and above) reductions
- With HDV efficiency (and above) reductions
- With aircraft efficiency (and above) reductions
- Path to achieve 80% below 1990 by 2050
Conclusions

• Transportation
 – Energy savings makes vehicle efficiency options very attractive
 – Many available technologies are cost-effective contributors to overall GHG mitigation targets through 2030
 – Near-zero GHG emission vehicles and/or substantial VMT reductions required for deeper 2050 GHG reductions

• All economic sectors
 – On achieving the target of 1990 GHG emission level in 2020-2030 time period (40% reduction from baseline) . . .
 • Feasible with known technologies
 • Feasible with measures at cost < $50-per-tonne CO$_2$e
 • Many technologies in many economic sectors will be required
 • Many “no regrets” actions with net economic benefits to operators of efficiency technologies (e.g. appliance, lighting, buildings, and vehicles)
Conclusions

• Acknowledgements
 – Dissertation fellowship from ITS-Davis’ Sustainable Transportation Center (STC), with funding from Caltrans and U.S. DOT
 – Dissertation committee members: Dan Sperling, Joan Ogden, and Tim Lipman

• Contact
 – nplutsey@ucdavis.edu

• Questions?
Comparison with Other Studies

![Graph showing GHG reduction and cost effectiveness comparison](chart.png)
Other Benefits of GHG Mitigation Actions

With inclusion of generic $25/tonne CO₂e co-benefit:

GHG reductions in 2030, all sectors
(million tonne CO₂e/year)

Cost effectiveness ($2008/tonne CO₂e)

-150 -100 -50 0 50 100 150 200 250 300 350 400 450 500

Initial cost accounting
Lifetime cost accounting
Hypothetical ancillary cost accounting

Reductions to reach 1990 level of GHG emissions