Protocol Development for Vehicle Emission Toxicity Testing for Particulate Matter

Keith Bein (PI), Chris Vogel and Norm Kado
University of California, Davis
03/29/2018

Work sponsored by
California Air Resources Board (Project 14-305)
Motivation and Significance

- Continually evolving emissions and exposure landscapes (exposome)
 - Advancing technologies, changing practices, shifting regulations, emerging mitigation strategies…

- Constant need to evaluate for intended impact

- Main impetus is protecting human health
 - How do we assess?
 - Epidemiologically (correlative) versus toxicologically (causative)
 - What biological system do we use?
 - Animal model, cell culture, organoid…
 - How do we expose and at what dose?
 - Bolus versus inhalation, acute versus chronic, ambient versus concentrated, injection versus ALI deposition
 - How do we collect sample?
 - Field sampling versus laboratory generated
 - How do we extract and prepare samples?
 - Exhaustive versus selective
 - What endpoints do we test and at what timepoints?
 - Pulmonary, cardiovascular, neurological…
 - Inflammation, oxidative stress, mutagenicity…

- Outcome dependent upon variable selection but exactly how and why is not well understood
Research Objective and Hypotheses

- Investigate effect of PM sample preparation technique on outcome of standard assay panel using filter samples from dynamometer study
 - Single study → constant assay panel → vary PM preparation technique
 - Null hypothesis: outcomes independent of PM preparation technique
 - Test hypotheses
 i. Depends on nature of extraction
 - Exhaustive (whole PM) versus selective (fractionated PM)
 ii. Depends on extraction solvents
 - Polar protic versus polar aprotic versus nonpolar
 iii. Toxicological matrix effects
 - Sum of responses to fractionated PM > response to PM composite or whole PM
 - Antagonistic and/or synergistic effects
 - Toxicologically inert components interfere with response to active ones
 - Particle matrix inhibits bioavailability of active components
 iv. Most robust and reliable PM preparation technique is assay dependent
 - End deliverable: standard operating procedure for PM sample preparation
 - For DEP as a function of assay
Fundamentals

➢ Sample Preparation
 ❖ Three step process
 i. *Pretreatment* – physical/chemical characteristics altered prior to extraction
 ii. *Solvent Extraction* – components separated from liquid, solid or semi-solid matrix and dissolved in compatible solvent
 ▪ Several different extraction techniques currently available
 iii. *Post-extraction cleanup* – matrix residues and interfering co-extractable compounds removed
 ▪ SPE: Filtering, adsorbents (silica, alumina…) and ion exchange interfaces

❖ Exhaustive versus Selective
 • Exhaustive – maximize number and amount of components extracted
 ▪ PM extractions → whole PM
 • Selective – maximize specific components and minimize co-extraction of others
 • PM extractions → fractionated PM
Existing Extraction Techniques

- **Solvent Extraction** – diffusion based process (↔ matrix); *function*(solvent, energy, time)
 - **Heat Reflux Extraction (HRE)**
 - Reflux in solvent(s) for extended periods
 - Simple, cost-effective and small scale
 - **Soxhlet Extraction (SoxE)**
 - HRE with in-line filtration
 - **Sonication Extraction**
 - Ultrasonic energy breaks down matrix
 - ↑ extraction efficiency; ↓ extraction time
 - **Microwave-Assisted Extraction (MAS)**
 - Microwave radiation heats sample in solvent
 - High throughput and efficient (time + solvent)
 - **Supercritical Fluid Extraction (SFE)**
 - Hybrid gas-/liquid-like properties (↑ diffusivity + ↓ viscosity = ↑ penetration)
 - Special handling requirements → expensive → limited applicability
 - **Pressurized Fluid Extraction**
 - ↑ pressure + temperature → ↓ viscosity → ↑ extraction kinetics
 - High throughput, fast and efficient (time + solvent)

<table>
<thead>
<tr>
<th>Technique</th>
<th>Extraction Times</th>
<th>Solvent Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soxhlet</td>
<td>4-48 hrs</td>
<td>150-500 mL</td>
</tr>
<tr>
<td>Automated Soxhlet</td>
<td>1-4 hrs</td>
<td>50-100 mL</td>
</tr>
<tr>
<td>Sonication</td>
<td>0.5-1 hrs</td>
<td>150-200 mL</td>
</tr>
<tr>
<td>Supercritical Fluid</td>
<td>0.5-2 hrs</td>
<td>5-50 mL</td>
</tr>
<tr>
<td>Microwave</td>
<td>0.5-1 hrs</td>
<td>25-50 mL</td>
</tr>
<tr>
<td>Accelerated Solvent</td>
<td>0.2-0.3 hrs</td>
<td>5-200 mL</td>
</tr>
</tbody>
</table>
Solvent Selection

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Boiling Point (°C)</th>
<th>Density (g/mol)</th>
<th>Dielectric Constant</th>
<th>Dipole Moment</th>
<th>dP Polar Bonds</th>
<th>dH Hydrogen Bonding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Polar Solvents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexane (hx)</td>
<td>69</td>
<td>0.655</td>
<td>1.88</td>
<td>0.00 D</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Benzene (Bz)</td>
<td>80</td>
<td>0.879</td>
<td>2.30</td>
<td>0.00 D</td>
<td>0.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Toluene (tol)</td>
<td>111</td>
<td>0.867</td>
<td>2.38</td>
<td>0.36 D</td>
<td>1.4</td>
<td>2.0</td>
</tr>
<tr>
<td>Diethyl ether (eth)</td>
<td>35</td>
<td>0.713</td>
<td>4.30</td>
<td>1.15 D</td>
<td>2.9</td>
<td>4.6</td>
</tr>
<tr>
<td>Chloroform (chl)</td>
<td>61</td>
<td>1.498</td>
<td>4.81</td>
<td>1.04 D</td>
<td>3.1</td>
<td>5.7</td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td>101</td>
<td>1.033</td>
<td>2.30</td>
<td>0.45 D</td>
<td>1.8</td>
<td>9.0</td>
</tr>
<tr>
<td>Polar Aprotic Solvents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>77</td>
<td>0.894</td>
<td>6.02</td>
<td>1.78 D</td>
<td>5.3</td>
<td>7.2</td>
</tr>
<tr>
<td>Tetrahydrofuran (THF)</td>
<td>66</td>
<td>0.886</td>
<td>7.50</td>
<td>1.75 D</td>
<td>5.7</td>
<td>8.0</td>
</tr>
<tr>
<td>Dichloromethane (DCM)</td>
<td>40</td>
<td>1.327</td>
<td>9.10</td>
<td>1.60 D</td>
<td>7.3</td>
<td>7.1</td>
</tr>
<tr>
<td>Acetone (ace)</td>
<td>56</td>
<td>0.786</td>
<td>21.00</td>
<td>2.88 D</td>
<td>10.4</td>
<td>7.0</td>
</tr>
<tr>
<td>Acetonitrile (MeCN)</td>
<td>82</td>
<td>0.786</td>
<td>37.50</td>
<td>3.92 D</td>
<td>18.0</td>
<td>6.1</td>
</tr>
<tr>
<td>Dimethylformamide (DMF)</td>
<td>153</td>
<td>0.944</td>
<td>38.00</td>
<td>3.82 D</td>
<td>13.7</td>
<td>11.3</td>
</tr>
<tr>
<td>Dimethyl sulfoxide (DMSO)</td>
<td>189</td>
<td>1.092</td>
<td>46.70</td>
<td>3.96 D</td>
<td>16.4</td>
<td>10.2</td>
</tr>
<tr>
<td>Polar Protic Solvents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetic acid</td>
<td>118</td>
<td>1.049</td>
<td>6.20</td>
<td>1.74 D</td>
<td>8.0</td>
<td>13.5</td>
</tr>
<tr>
<td>n-Butanol</td>
<td>118</td>
<td>0.810</td>
<td>18.00</td>
<td>1.63 D</td>
<td>5.7</td>
<td>15.8</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>82</td>
<td>0.785</td>
<td>18.00</td>
<td>1.66 D</td>
<td>6.1</td>
<td>16.4</td>
</tr>
<tr>
<td>n-Propanol</td>
<td>97</td>
<td>0.803</td>
<td>20.00</td>
<td>1.68 D</td>
<td>6.8</td>
<td>17.4</td>
</tr>
<tr>
<td>Ethanol (EtOH)</td>
<td>79</td>
<td>0.789</td>
<td>24.55</td>
<td>1.69 D</td>
<td>8.8</td>
<td>19.4</td>
</tr>
<tr>
<td>Methanol (MeOH)</td>
<td>65</td>
<td>0.791</td>
<td>33.00</td>
<td>1.70 D</td>
<td>12.3</td>
<td>22.3</td>
</tr>
<tr>
<td>Formic acid</td>
<td>101</td>
<td>1.210</td>
<td>58.00</td>
<td>1.41 D</td>
<td>10.0</td>
<td>14.0</td>
</tr>
<tr>
<td>Water</td>
<td>100</td>
<td>1.000</td>
<td>80.00</td>
<td>1.85 D</td>
<td>16.0</td>
<td>42.3</td>
</tr>
</tbody>
</table>
Sample Collection & Extraction Objectives

Filter Extractions

- PM sampled from environment by drawing air across collection substrate
 - Ambient atmosphere, smokestack, fence line, interiors, lab generated exhaust
 - Numerous collection substrates including various filter types
- Sampled PM extracted from collection substrates for subsequent studies
- Extraction objectives depend on study
 - In vitro studies
 - Conserve original physical and chemical properties of PM
 - Represent true population exposure as much as possible
 - Chemical characterization
 - PM chemically complex → extraction depends on analytical technique
 - Maximize selective extraction and minimize co-extraction/interference
 - In vivo studies
 - Assays designed for specific endpoints; e.g. inflammation, ROS, mutagenicity…
 - Elicit most robust, reliable and repeatable response for given assay
 - Best extraction technique likely assay specific
Particulate Matter Source

- **Diesel Exhaust Particles (DEP)**
 - Most heavily studied source of air pollution
 - Greater than four decades of research and an exhaustive literature
 - Epidemiological studies date back to 1950s
 - US EPA diesel emissions research program established in 1979
 - Carcinogenic/mutagenic chronic exposure studies of the 1980s
 - Characterization studies of the 1990s and 2000s
 - Stationary, mobile, roadside, tunnel, dynamometer, laboratory generated
 - Detailed physical and chemical characterization; emission factors and rates
 - Exponential ↑ in sophistication, scope and resolution of toxicity testing
 - Assays; e.g. reverse transcription polymerase chain reaction (RT-PCR)
 - Animal models; e.g. transgenic and knockout mice
 - Cell lines; e.g. human lung epithelial cells, macrophages, stem cells…
 - Endpoints; e.g. pulmonary, cardiovascular and neurological
 - Injury metrics; e.g. protein levels, gene expression and regulation
 - Exposure scenarios; e.g. CAPS, source-oriented toxicity; adjuvant effects
Common DEP Extraction Techniques

- Liquid Impingers; e.g., Ethanol
 - Solvent Concentration Assay

- Dynanometer Study Dilution Sampling
 - Whole Free DEP or DEP Filter Deposits

- Exhaustive Extraction Whole Particle
 - Direct Suspension & Dispersion in Medium
 - Agitation Vortexing
 - Sonication
 - Solvent Sonication (H₂O, Me/MeOH, DCM)
 - Single Solvent
 - Solvents in Series
 - Solvent Removal Vac Evap/N₂ blowdown
 - Resuspension in Medium
 - Assay

- Selective Extraction Particle Fractionation
 - Common Solvents DCM, MeOH, Hx, Bz
 - Soxhlet Extraction
 - Sonication Extraction
 - Pressurized Fluid Extraction
 - Single Solvent
 - Solvents in Series
 - Micropore Filtration Column Cleanup
 - Solvent Removal Vac Evap/N₂ blowdown
 - Assay
 - Resuspension in Medium
 - Assay
 - Single Ex
 - Assay Composite Ex
Experimental Design

3 samples × 6 sample preparation techniques × 5-pt assay panel

- Chassis Dynamometer DEP Filter Sample (*Dyno-DEP*)
 - CARB Heavy-Duty Engine Emissions Testing Laboratory
 - 2000 Freightliner Truck w/2000 Caterpillar C15 engine
 - California certified Ultra-Low Diesel Fuel
 - Urban Dynamometer Driving Schedule (UDDS)
 - Samples drawn from dilution tunnel
 - High-Volume filter unit loaded with Teflon filter sheets (8”x10”)
 - Collection time ~ 35 minutes (2 UDDS test cycles)

- Chassis Dynamometer Filter Blank (*FB*)

- NIST Standard SRM 1650 (*NIST-DEP*)
Experimental Design

3 samples × 6 sample preparation techniques × 5-pt assay panel

➢ Two exhaustive (whole particle) extractions
 • Single solvent sonication extraction (SS-SE)
 - Samples sonicated in water
 • Serial multiple solvent sonication extraction (SMS-SE)
 - Samples sonicated in series using DCM, MeOH and Tol
 - Reconstituted into composite DEP extract

➢ Four selective (PM fractionation) extractions
 • Single solvent heat reflux extraction (SS-HRE)
 - Samples extracted individually in DCM, MeOH and Tol
 • Serial multiple solvent heat reflux extraction (SMS-HRE)
 - Samples extracted in series using DCM, MeOH and Tol
 - Reconstituted into composite DEP extract

➢ Independent replications pooled to account for systematic errors in prep
Experimental Design

3 samples × 6 sample preparation techniques × 5-pt assay panel

• U937 Macrophages + qPCR
 • Reactive oxygen species (ROS) production
 • Acellular dithiothreitol (DTT) assay
 • Inflammation
 • Cyclooxygenase-2 (COX-2) and interleukin 8 (IL-8)
 • Cellular response to PAHs
 • Cytochrome P450 1A1 (CYP1A1) expression
 • Mutagenicity
 • Ames assay
• 3-point dose response curve for each combination of assay and extract
 • Repeat in duplicate at linear part of dose response curve
Measurement Matrix

<table>
<thead>
<tr>
<th>Assay</th>
<th>Study</th>
<th>H2O-SE</th>
<th>DMT-SE</th>
<th>DCM-HRE</th>
<th>MeOH-HRE</th>
<th>Tol-HRE</th>
<th>DMT-HRE</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NIST</td>
<td>Dyno</td>
<td>FB</td>
<td>NIST</td>
<td>Dyno</td>
<td>FB</td>
<td>NIST</td>
</tr>
<tr>
<td>DTT</td>
<td>3-pt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>36</td>
</tr>
<tr>
<td>COX-2</td>
<td>3-pt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>IL-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYP1A1</td>
<td>3-pt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ames</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>36</td>
</tr>
<tr>
<td>Totals</td>
<td>3-pt</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>DR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>Dose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>All</td>
<td>6</td>
<td>15</td>
<td>6</td>
<td>6</td>
<td>15</td>
<td>6</td>
<td>162</td>
</tr>
</tbody>
</table>
Extraction Apparatus

Heat Reflux, Vacuum Distillation and N₂ Blowdown

Syringe Filtrations
Extraction Results

- Extraction efficiency as function of solvent for both HRE and SE
 - DCM > Toluene > MeOH > H₂O
- HRE more efficient than SE
- 30-60% of extracted DEP removed by post-extraction filtration
CYP1A

- Significantly upregulated by all DEP extracts relative to vehicle control
- NIST-DEP expression greater than Dyno-DEP for given extraction
- For Dyno-DEP and NIST-DEP
 - HRE > SE
 - HRE-DMT largest
 - DMT-SE > H2O-SE
IL-8

- NIST-DEP expression greater than Dyno-DEP for given extraction
- For Dyno-DEP and NIST-DEP
 - HRE > SE
 - DMT-HRE largest
 - DMT-SE > H2O-SE
- Dyno-DEP H2O-SE not significantly different that FB extract
COX-2

- All extracts significantly above control
- Only DCM-HRE and DMT-HRE of Dyno-DEP significantly above FB
- *NIST-DEP* expression greater than *Dyno-DEP* for given extraction
- For *Dyno-DEP* and *NIST-DEP*
 - HRE > SE
 - DMT-HRE largest
 - DMT-SE > H2O-SE
- *Dyno-DEP* H2O-SE not significantly different that FB extract
CYP1A1
Dose Response
IL-8 Dose Response
COX-2
Dose Response
Mutagenicity

- **NIST-DEP activity >> Dyno-DEP**
- **HRE activity > SE for both DEP**

- **DMT-SE > H2O-SE**
- **H2O-SE not significant**
Reactive Oxygen Species Production

- **DTT consumption generally low**
- **MeOH-HRE of FB largest**
- **Data noisy and uninformative**

DTT Consumption

<table>
<thead>
<tr>
<th>Sample</th>
<th>DTT Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyno-DEP (Diesel PM)</td>
<td></td>
</tr>
<tr>
<td>NIST-DEP (Diesel PM)</td>
<td>0.07</td>
</tr>
</tbody>
</table>

- **NIST-DEP consumption >> Dyno-DEP**
- **MeOH-HRE largest**
- **Repeatability issue for DCM-HRE**
Evaluation of Test Hypotheses

➢ Outcomes dependent upon extraction technique; i.e. exhaustive versus selective
 • Observed in all data for both Dyno-DEP and NIST-DEP
 • HRE (selective) consistently greater than SE (exhaustive)
 • HRE amplifies effect of active components by removing inactive matrix

➢ Outcomes dependent upon solvent system
 • Observed in both Dyno-DEP and NIST-DEP
 • DMT-SE consistently greater than H2O-SE
 • CYP1A1 greatest for Toluene; most efficient at solvating PAHs
 • DTT consumption greatest for MeOH; polar compounds driving ROS

➢ Toxicological matrix effects; component sum greater than composite
 • Not possible to evaluate on equal mass dose basis
 • Inferred from NIST-DEP dose response curves for HRE
 - DCM + MeOH + Toluene (lowest dose) >> DMT at highest dose

➢ Robustness and reliability of sample preparation technique assay dependent
 • DTT consumption greatest for MeOH-HRE
 • CYP1A1 expression greatest for Tol-HRE
Conclusions

- For given extraction technique, response to *NIST-DEP* >> *Dyno-DEP* for all assays
 - Attributed to compositional differences in DEP
 - *NIST*: collected in 1984; several uncontrolled diesel engines; scraped of heat exchanger surfaces; higher sulfur and aromatic content in fuel
 - *Dyno*: collected from single modern (2000) diesel engine; sampled onto filter from dilution tunnel; ultra-low sulfur fuel

- HRE consistently enhances response of active components by removing inactive matrix components included in SE extracts

- Nonpolar compounds elicit greatest response across all assays except ROS production, which is largest for more polar DEP components

- Strong evidence for existence of composite interference or toxicological matrix effects

- Although different techniques appear equally repeatable across assays, those eliciting most robust response are assay-specific
Recommendations

- **Chemical Characterization**
 - Are compositional differences driving observed differential responses?
 - Explore relationship between PM compositional complexity and toxicity

- **Selective versus Exhaustive Extraction**
 - Fractionated DEP extracts consistently elicit greatest response
 - Complex particle mixtures better characterize true human exposure
 - Which method is the more appropriate evaluation metric?

- **Standardization**
 - Single method for all assays: DCM-HRE
 - Assay specific methods
 - MeOH-HRE for DTT
 - DCM-HRE for molecular markers and mutagenicity
 - Tol-HRE for CYP1A1
 - Exhaustive method
 - Compare HRE without post-extraction filtration to SE

- **Dyno-DEP Filter Samples**
- **Labware Selection**
Questions?

- Keith Bein (kjbein@ucdavis.edu)
- Christoph Vogel (cfvogel@ucdavis.edu)
- Norman Kado (nykado@ucdavis.edu)