Development of Reactivity Scales via 3-D Grid Modeling of California Ozone Episodes

Principal Investigators:
Robert Harley, Univ. of California, Berkeley
Jana Milford, Univ. of Colorado, Boulder
Ted Russell, Georgia Institute of Technology

Presented by
Dongmin Luo, Ph.D., P.E.
Research Division
California Air Resources Board

Reactivity Research Advisory Committee
June 13, 2002
Outline

• Introduction
• Methodology
• VOC Reactivity in SoCAB
• Uncertainty and Variability
• VOC Reactivity in Central California
• Conclusions
Introduction

Concerns:
- Physical detail of box model
- Multi-day vs one-day scenarios
- Uncertainties

Objectives:
- Use state-of-science grid-based photochemical air quality models to assess VOC reactivity in the SoCAB and central California;
- Compare 3-D reactivity with box model reactivity; and
- Conduct sensitivity and uncertainty analysis.
Methodology

- CIT model (SoCAB) and MAPSIP (Central California)
- Extended version of the SAPRC99 chemical mechanism
- 31 chemical species (7 alkanes, 7 alkenes, 5 aromatics, 6 carbonyls, and 6 others)
- Incremental reactivity scales: AIR and RIR
- Metrics: MIR-3D, MOIR-3D, MOIR-3D-8hr, exposure, average
VOC reactivity in the SoCAB

Alkanes

Hawthorne
Long Beach
Central Los Angeles
Anaheim
Burbank
Azusa
Claremont
Rubidoux
Carter (2000b) R_MIR

relative incremental reactivity

methane, ethane, n-butane, n-pentane, isopentane, methylcyclopentane, 2,2,4trimethylpentane
VOC reactivity in the SoCAB

Alkenes

- Ethene
- Propene
- 2-methyl-2-butenes
- 1,3-butadiene
- Isoprene
- α-Pinene
- OLE1

Relative incremental reactivity

Locations:
- Hawthorne
- Long Beach
- Central Los Angeles
- Anaheim
- Burbank
- Azusa
- Claremont
- Rubidoux
- Carter (2000b) R_MIR
VOC reactivity in the SoCAB

Aromatics

- benzene
- toluene
- m-xylene
- p-xylene
- 1,2,4-trimethylbenzene

Relative incremental reactivity

- Hawthorne
- Long Beach
- Central Los Angeles
- Anaheim
- Burbank
- Azusa
- Claremont
- Rubidoux
- Carter (2000b) R_MIR
Uncertainty and Variability

Absolute Incremental Reactivities and associated Uncertainties

- Anaheim
- Azusa
- Claremont
- Riverside

Chemicals: CO x 10, ETOH, HCHO, MEK, N-C4, PRPE, 224P, XYL, BASE
Uncertainty and Variability

Relative Incremental Reactivities and Associated Uncertainties

Anaheim
Azusa
Claremont
Riverside
Uncertainty and Variability

RIR and Contributing Parameters

<table>
<thead>
<tr>
<th></th>
<th>Anaheim</th>
<th>Azusa</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCHO (RIR = 8.45 (0.20); $R^2 = 0.97$)</td>
<td>HCHO (RIR = 11.54 (0.14); $R^2 = 0.95$)</td>
<td></td>
</tr>
<tr>
<td>HCHO + hv</td>
<td>0.34</td>
<td>0.27</td>
</tr>
<tr>
<td>O3 + hv</td>
<td>0.27</td>
<td>0.34</td>
</tr>
<tr>
<td>EMCO</td>
<td>0.25</td>
<td>0.18</td>
</tr>
<tr>
<td>O1D2 + M</td>
<td>0.18</td>
<td>0.42</td>
</tr>
<tr>
<td>NO2 + hv</td>
<td>0.18</td>
<td>CCO-O2 + NO</td>
</tr>
<tr>
<td>HO + NO2</td>
<td>0.27</td>
<td>O3 + hv</td>
</tr>
<tr>
<td>CCO-O2 + NO</td>
<td>0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>PAN</td>
<td>0.40</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Contributing Parameters:
- 0.34 ± 0.52 for 27.5
- 0.27 ± 0.45 for 20.5
- 0.25 ± 0.33 for 11.0
- 0.18 ± 0.30 for 8.8
- 0.18 ± 0.29 for 8.3
- 0.27 ± 0.28 for 8.0
- 0.34 ± 0.24 for 5.6
- 0.40 ± 0.23 for 5.3

Values:
- 0.27 ± 0.52 for 26.8
- 0.34 ± 0.46 for 20.9
- 0.18 ± 0.36 for 12.8
- 0.42 ± 0.27 for 7.5
- 0.34 ± 0.23 for 5.3
- 0.27 ± 0.21 for 4.2
- 0.18 ± 0.20 for 4.2
- 0.10 ± 0.20 for 4.1
VOC Reactivity in Central California

Relative Reactivity Metrics, MIR-3D

- Relative Reactivity (g O3 / g VOC)

- 2MBT, BUTD, PRPE, ISOP, XYL, ETHE, HCHO, RCHO, OLE1, 124B, CCHO, APIN, XLYP, TOLU, MCPT, ETOH, IPNT, N_C5, MEK, 224P, N_C4, C2H2, BACT, C2H2, MTBE, MEOH, ACET, C2H6, CO, CH4, BALD

- MIR-3D
- MIR

- X (10)
- X (100)
- X (-1)
VOC Reactivity in Central California

Relative Reactivity Metrics, Comparison

- Exposure
- MIR-3D
- MOIR-3D
- MOIR-3D-8hr

Relative Reactivity (g O3 / g VOC)

Chemicals:
- 2MBT
- BUTD
- PRPE
- ISOP
- XLYM
- ETHE
- HCHO
- RCHO
- OLE1
- 124B
- CCHO
- APIN
- XLYP
- TOLU
- MCPT
- ETOH
- IPNT
- N_C5
- MEK
- 224P
- N_C4
- C2H2
- BAC
- C6H4
- MTBE
- MEOH
- ACET
- C2H6
- CO
- CH4
- BALD
SoCAB vs. Central California

Relative Incremental Reactivity
SoCAB vs. Central California

![Graph showing relative incremental reactivity between SoCAB and Central California](graph.png)
Conclusions

- Reactivity scales developed using 3-D modeling resulted in similar ranking of individual VOC when compared to Carter’s Box model MIR.
- The variation in reactivity across the basin is less on a relative rather than absolute scale.
- The results from central California are similar to those for the South Coast Air Basin. Most VOCs behaved similarly in all metrics studied.
- The uncertainties range from 0.3 to 0.4 in the absolute scale and 0.2 to 0.35 in the relative scale.
Eastern US vs. California

MIR-3D

California

Eastern US