Secondary Aerosol Formation during CalNex-LA: Real-time HR-AMS Measurements from a Photooxidation Reactor (PAM)

Amber. ortega@colorado.edu

Summary

- Artificial photochemical processing of LA-Basin plume
- More PAM enhancement at night than day, suggests short-lived SOA precursors
- Organic aerosol appears to decrease at very high OH

Potential Aerosol Mass (PAM) Reactor

Real-Time Photochemical Processing Device

Modified PAM Chamber from Kang et al., 2007; 2010
- Small (1 ft flow-through chamber)
- Short residence time ~4 min
- Aluminum shell (no loss of charged particles)
- UV light from mercury lamps (254 and 185 nm)
- High OH radical levels via O3 or O2 photolysis
- 10-1000 times tropospheric oxidant concentrations
 - O3 \(\rightarrow \) O + O3 (185 nm)
 - O3 + O3 \(\rightarrow \) O + O + O
 - O3 + O3 \(\rightarrow \) O + O + O
 - O3 + O3 \(\rightarrow \) O + O + O

CalNex-LA Experimental Setup

- PAM reactor with open flow-through configuration (no inlet) to sample ambient air continuously
- PAM output was measured by an HR-ToF-AMS (DeCarlo et al., 2006), TSI SMPS, O3, SO2, and relative humidity monitors
- Measurements alternated between ambient and PAM-processed air with five minute time resolution
- Intensity of photochemical processing varied in steps by adjusting UV lights (which change OH and O3 conc.)

PAM Processing: Low Inorganic Period

- A 24 hr period from 20:00h May 29 – May 30 with high organic, low inorganic concentrations.
- Divided into two 8-hr periods: Day and Night
- Enhancement of organic and sulfate aerosol compared to aging
- Organic enhancement at night with moderate OH, mass decrease at highest OH

Changes to Size and Oxidation

- Significant size shift in SMPS data at high OH
- Contributes to mass loss at high OH due to AMS size cut ~50 nm
- Ratio of m/z 44 to total OA (f44) compared to m/z 43 to total OA (f43), Ng et al., 2010.
- PAM processing colored by Atm. Eqv. Age, f44 to f43 ratio shifts

CalNex-LA Experimental Setup

- PAM reactor with open flow-through configuration (no inlet) to sample ambient air continuously
- PAM output was measured by an HR-ToF-AMS (DeCarlo et al., 2006), TSI SMPS, O3, SO2, and relative humidity monitors
- Measurements alternated between ambient and PAM-processed air with five minute time resolution
- Intensity of photochemical processing varied in steps by adjusting UV lights (which change OH and O3 conc.)

References

Acknowledgments

This research has been supported by the California Air Resources Board (CARB) contract 08-218, and also partially by a fellowship from the Department of Energy (DOE) Office of Science Graduate Fellowship Program administered by ORISE and managed by ORAU under DOE contract number DE-AC02-05CH11231. All opinions expressed in this paper are the authors’ and have not been reviewed or approved by the funding agencies. Special thanks to CalNex, CalExch organizes, and Michael Lechleider for collaboration, logistics, and support of this work.