Carbonaceous Aerosol and Radiative Effects Study (CARES)

DOE ASP Field Campaign in 2010

Rahul Zaveri, Will Shaw, Dan Cziczo
Pacific Northwest National Laboratory

CalNex Planning Meeting
Sacramento, February 5, 2008
Collaborators (Partial List)

PNNL

BNL
P.H. Daum, L.I. Kleinman, P.H. Daum, Y.-N. Lee, G. Sennum, S.R. Springston, J. Wang

Other Institutions (listed in alphabetical order of the institution name)
Timothy B. Onasch, Scott C. Herndon, Douglas R. Worsnop, Aerodyne Research, Inc.
Eileen McCauley, Ajith Kuduwela, California Air Resources Board
W. Patrick Arnott, Desert Research Institute/University of Nevada, Reno
Manvendra Dubey, Los Alamos National Laboratory
Claudio Mazzoleni, Michigan Technological University, Houghton
Chris Hostetler, Rich Ferrare, NASA Langley
David Parrish, Tom Ryerson, NOAA, Boulder
Jon Thompson, Texas Tech University, Lubbock
Jeff Gaffney and Nancy Marley, University of Arkansas, Little Rock
Kimberly A. Prather, University of California, San Diego
Tom Jobson, Washington State University, Pullman
Evaluate, improve, and validate models of aerosol formation, aging, and their climate-relevant properties, with particular emphasis on:

- Anthropogenic and biogenic secondary organic aerosol (SOA)
- Aerosol mixing states
- Optical and CCN activation properties
- Biomass burning aerosols (as opportunity arises)
Focus on Sacramento Plume / Central Valley

VOC Emissions [Steiner et al., 2007]

Anthropogenic VOC Biogenic VOC
Sacramento-Blodgett Forest Corridor

Somewhat regular meteorology expected in Summer

Typical daytime Sacramento plume transport

- Morning
- Noon
- Late afternoon
Scientific and Logistical Motivations

- Clear skies and highly regular wind patterns in summer
- Convenient to deploy ground sites and aircraft
- Detailed CARB emissions inventory (a big plus for modeling!)
- Great opportunity for ASP to collaborate with NOAA, CARB, and other participants
- Several previous ground-based studies at this location provide a good foundation for an intensive ASP field project in 2010

[e.g., Dillon et al., 2002; Murphy et al., 2006; Steiner et al., 2007; BEARPEX 2006-2007]
CARES Logistics

Where: Sacramento / Central Valley, California

When: June 2010

Measurements Platforms

- DOE G-1 aircraft
- NASA B-200 aircraft (HSRL)
- T0 Ground Site in Sacramento urban area
- T1 Ground Site downwind of Sacramento (Possibly at “Cool”)
- Aerodyne Mobile Lab (pending ASP support)

Aircraft Base

- Mather Airport
- Full-service FBO, 24-hour air traffic control, 11,300 feet runway.
Coordinated Flight Plans & Collaborations

- Coordinated flights of **G-1** and **B-200** upwind, within, and downwind of Sacramento
 - Stacked patterns
- Coordinated flights of **G-1**, **B-200**, and **WP-3** as opportunity arises during **June 1 – 15**.
 - Wing-tip intercomparisons
 - Race track pattern
- Possible coordination of G-1 flights over other CalNex ground sites, especially during **June 15 – 30**.
- Possible coordination with **CIRPAS Twin Otter**
- Welcome additional collaborations and support for the CARES ground sites
DOE G-1 Aircraft Measurements

Platform
- Gulfstream 159, N701BN
- Nominal flight altitude: 25 kft (7.6 km)
- Useful load: ~4000 lb
- Sampling speed: 195 knots (100 m/s)
- Mission duration: ~4 hours
- Science flight hours: ~70 h
- Based in Sacramento (Mather Field)

Basic Instruments
- total temperature
- static pressure
- gust-probe differential pressures
- platform position/velocity/attitude
- dew-point temperature
- aerosol spectrum, 0.1-3 µm (PCASP)
- particle count, >7nm (CPC)
- particle count, >3nm (uCPC)
- particle light scattering (nephelometer)
- particle absorption (PSAP)
- isokinetic aerosol inlet

G-1 Administered by PNNL’s Airborne Facility and Programs Office
DOE G-1 Aircraft Measurements

Potential CARES Instruments

- Aerosol Mass Spectrometer (AMS)
- SPLAT/ATOFMS
- Single Particle Soot Photometer (SP2)
- PILS (Water Soluble Organic Carbon, WSOC)
- TSEMS/FIMS, PCASP
- PTRMS
- NO\textsubscript{x}, NO\textsubscript{y}, O\textsubscript{3}, SO\textsubscript{2}, NH\textsubscript{3}, CO, VOC (canisters)
- Nephelometer, PSAP, Photo-acoustic
- Aerosol samplers (TRAC, DRUM and others) for
 - microprobe/microscopy analysis
 - high-resolution MS analysis of oligomer constituents in OA
- Radiation (down-welling and up-welling, spectrally resolved)

Not all instruments listed here will simultaneously fit on the G-1!
NASA B-200 Deployment for CARES 2010

Platform
- NASA Langley King Air B-200
- Nominal flight altitude: 28 kft (~ 9 km)
- Science flight hours: ~70 h
- Aircraft speed: 200-220 knots
- Aircraft duration: 4-5 hours
- Based in Sacramento with DOE G-1

Instruments
- High Spectral Resolution Lidar
- Digital Camera
- Research Scanning Polarimeter

Ferrare/Hostetler NASA Langley
(possible) Cairns NASA/GISS

Objectives
- Support DOE G-1 operations (reconnaissance and real-time direction)
- Characterize the vertical and horizontal distribution of aerosols and aerosol optical properties
- Provide the vertical context for G-1 and ground in situ measurements
- Infer aerosol type and apportion optical depth by type
- Investigation of new active + passive (lidar + radiometer) aerosol retrieval techniques
- Characterize the PBL height and distribution of aerosols within and above PBL
- Assess aerosol model transport simulations
- CALIPSO/CALIOP & GLORY/APS Validation
NASA Langley Airborne High Spectral Resolution Lidar (HSRL)

HSRL Technique (Hair et al., AO, 2008):
- Relies on spectral separation of aerosol and molecular backscatter in lidar receiver
- Independently measures aerosol backscatter, extinction, and optical thickness
- Internally calibrated
- Provides intensive aerosol parameter to help determine aerosol type

HSRL Aerosol Data Products:
- Scattering ratio (532 nm)
- Backscatter coefficient (532, 1064 nm)
- Extinction Coefficient (532 nm)
- Backscatter Wavelength Dependence (532/1064 nm)
- Extinction/Backscatter Ratio (“lidar ratio”) (532 nm)
- Depolarization (532, 1064 nm)

February 15, 2007 Flight over San Joaquin Valley
Derived parameters

- **Aerosols**
 - optical depth
 - location and width of both modes of bimodal size distribution
 - refractive index
 - estimates of size and amount of accumulation mode aerosols above clouds

- **Clouds**
 - optical depth
 - effective radius, variance
 - liquid water path
 - cloud drop number concentration

Measurements

- Total and linearly polarized reflectance in nine spectral channels
- 152 viewing angle samples over 120 deg angular range
Ground Measurements at T0 / T1

Tentative List

- Aerosol Mass Spectrometer (AMS)
- SPLAT II
- Single Particle Soot Photometer (SP2)
- PILS (Water Soluble Organic Carbon, WSOC)
- SMPS
- PTRMS, GC-MS for SVOCs and VOCs in urban air
- EC/OC Analyzer
- NO$_x$, NO$_y$, O$_3$, SO$_2$, NH$_3$, CO, VOC (canisters)
- Nephelometer, PSAP, cavity ring-down, Photo Acoustic Soot Spectrometer
- CCN counter, Humidified-TDMA, Volatility-TDMA
- UV-MFRSR, Rotating Shadowband Spectrometer (RSS)
- Trace gas photolysis rates.
- Aerosol samplers (TRAC, DRUM and others) for
 - microprobe/microscopy analysis
 - radiocarbon analysis (13C, 14C), and
 - high-resolution MS analysis of oligomer constituents in OA
- Meteorological measurements, including profilers, sodars, and radiosondes
Pending ASP Support

- Aerosol Mass Spectrometer (AMS) with the black carbon detection module (SP2)
- Scanning Mobility Particle Sizer (SMPS)
- Multi-angle absorption photometer (MAAP)
- CAPS-extinction and SSA instruments
- Gas Chromatogram, originally based on TO-14 method targeting aromatics and semi-volatiles
- QC-TILDAS – HCHO/HCOOH and NH3
- PTR-MS
- NO, NO₂ (direct TILDAS), NOₓ, O₃, CO, CO₂
- Eppley uv, atmospheric temperature, pressure, wind direction, wind speed, relative humidity