Attachment A

Modifications to Malfunction and Diagnostic System Requirements for 2004 and Subsequent Model-Year Passenger Cars, Light-Duty Trucks, and Medium-Duty Vehicles and Engines (OBD II), Section 1968.2, Title 13, California Code Regulations
Table of Contents

(a) **PURPOSE** ... 1
(b) **APPLICABILITY** .. 1
(c) **DEFINITIONS** ... 1
(d) **GENERAL REQUIREMENTS** .. 5
 (1) The OBD II System .. 5
 (2) MIL and Fault Code Requirements .. 6
 (3) Monitoring Conditions ... 8
 (4) In-Use Monitor Performance Ratio Definition ... 9
 (5) Standardized tracking and reporting of monitor performance ... 13
 (6) Enforcement Testing .. 15
(e) **MONITORING REQUIREMENTS** ... 15
 (1) CATALYST MONITORING .. 15
 (1.5) CATALYST MONITORING FOR DIESELS .. 18
 (2) HEATED CATALYST MONITORING .. 20
 (3) MISFIRE MONITORING .. 21
 (3.5) MISFIRE MONITORING FOR DIESELS ... 27
 (4) EVAPORATIVE SYSTEM MONITORING ... 28
 (5) SECONDARY AIR SYSTEM MONITORING ... 30
 (6) FUEL SYSTEM MONITORING .. 32
 (7) OXYGEN SENSOR MONITORING .. 33
 (8) EXHAUST GAS RECIRCULATION (EGR) SYSTEM MONITORING .. 36
 (9) POSITIVE CRANKCASE VENTILATION (PCV) SYSTEM MONITORING 37
 (10) ENGINE COOLING SYSTEM MONITORING .. 38
 (11) COLD START EMISSION REDUCTION STRATEGY MONITORING 41
 (12) AIR CONDITIONING (A/C) SYSTEM COMPONENT MONITORING 42
 (13) VARIABLE VALVE TIMING AND/OR CONTROL (VVT) SYSTEM MONITORING 43
 (14) DIRECT OZONE REDUCTION (DOR) SYSTEM MONITORING .. 44
 (15) PARTICULATE MATTER (PM) TRAP MONITORING .. 45
 (16) COMPREHENSIVE COMPONENT MONITORING .. 45
 (17) OTHER EMISSION CONTROL OR SOURCE SYSTEM MONITORING 48
 (18) EXCEPTIONS TO MONITORING REQUIREMENTS .. 49
(f) **STANDARDIZATION REQUIREMENTS** ... 51
 (1) Reference Documents ... 51
 (2) Diagnostic Connector: ... 51
 (3) Communications to a Scan Tool: ... 52
 (4) Required Emission Related Functions: ... 52
 (5) In-use Performance Ratio Tracking Requirements ... 57
 (6) Service Information: ... 58
 (7) Exceptions to Standardization Requirements .. 59
(g) **MONITORING SYSTEM DEMONSTRATION REQUIREMENTS FOR**
CERTIFICATION.. 59
(1) General.. 59
(2) Selection of Test Vehicles:.. 60
(3) Required Testing:.. 60
(4) Testing Protocol:.. 62
(5) Evaluation Protocol:.. 63
(6) Confirmatory Testing:... 64
(h) CERTIFICATION DOCUMENTATION.. 65
(i) DEFICIENCIES.. 67
(j) PRODUCTION VEHICLE EVALUATION TESTING.. 69
 (1) Verification of Standardized Requirements... 69
 (2) Verification of Monitoring Requirements... 70
 (3) Verification and Reporting of In-use Monitoring Performance... 71
§1968.2. Malfunction and Diagnostic System Requirements--2004 and Subsequent Model-Year Passenger Cars, Light-Duty Trucks, and Medium-Duty Vehicles and Engines

(a) PURPOSE
The purpose of this regulation is to establish emission standards and other requirements for onboard diagnostic systems (OBD II systems) that are installed on 2004 and subsequent model-year passenger cars, light-duty trucks, and medium-duty vehicles and engines certified for sale in California. The OBD II systems, through the use of an onboard computer(s), shall monitor emission systems in-use for the actual life of the vehicle and shall be capable of detecting malfunctions of the monitored emission systems, illuminating a malfunction indicator light (MIL) to notify the vehicle operator of detected malfunctions, and storing fault codes identifying the detected malfunctions.

(b) APPLICABILITY
Except as specified elsewhere in this regulation (title 13, CCR section 1968.2), all 2004 and subsequent model-year vehicles, defined as passenger cars, light-duty trucks, and medium-duty vehicles, including medium-duty vehicles with engines certified on an engine dynamometer and medium-duty passenger vehicles, shall be equipped with an OBD II system and shall meet all applicable requirements of this regulation (title 13, CCR section 1968.2).

(c) DEFINITIONS
(1) “Actual life” refers to the entire period that a vehicle is operated on public roads in California up to the time a vehicle is retired from use.
(2) “Alternate phase-in” is a phase-in schedule that achieves equivalent compliance volume by the end of the last year of a scheduled phase-in provided in this regulation. The compliance volume is the number calculated by multiplying the percent of vehicles (based on the manufacturer’s projected sales volume of all vehicles) meeting the new requirements per year by the number of years implemented prior to and including the last year of the scheduled phase-in and then summing these yearly results to determine a cumulative total (e.g., a three year, 30/60/100 percent scheduled phase-in would be calculated as (30%*3 years) + (60%*2 years) + (100%*1 year) = 310). On phase-ins scheduled to begin prior to the 2004 model year, manufacturers are allowed to include vehicles introduced before the first year of the scheduled phase-in (e.g., in the previous example, 10 percent introduced one year before the scheduled phase-in begins would be calculated as (10%*4 years) and added to the cumulative total). However, on phase-ins scheduled to begin in 2004 or subsequent model years, manufacturers are only allowed to include vehicles introduced up to one model year before the first year of the scheduled phase-in. The Executive Officer shall consider acceptable any alternate phase-in which results in an equal or larger cumulative total by the end of the last year of the scheduled phase-in; however, all vehicles shall comply with the respective requirements subject to the phase-in within one model year following the last year of the scheduled phase-in.
(3) “Base fuel schedule” refers to the fuel calibration schedule programmed into the Powertrain Control Module or PROM when manufactured or when updated by some off-board source, prior to any learned on-board correction.

(4) “Calculated load value” refers to an indication of the percent engine capacity that is being used and is defined in ISO 15031-5, incorporated by reference (section (f)(1.9)). For diesel applications, the calculated load value is determined by the ratio of current output torque to maximum output torque at current engine speed.

(5) “Confirmed fault code” is defined as the diagnostic trouble code stored when an OBD II system has confirmed that a malfunction exists (e.g., typically on the second driving cycle that the malfunction is detected) in accordance with the requirements of sections (e)\(^1\) and (f)(4.4).

(6) “Continuously,” if used in the context of monitoring conditions for circuit continuity, lack of circuit continuity, circuit faults, and out-of-range values, means sampling at a rate no less than two samples per second. If for engine control purposes, a computer input component is sampled less frequently, the signal of the component may instead be evaluated each time sampling occurs.

(7) “Deactivate” means to turn-off, shutdown, desensitize, or otherwise make inoperable through software programming or other means during the actual life of the vehicle.

(8) “Diagnostic or emission critical” electronic powertrain control unit refers to the engine and transmission control unit(s). For the 2005 and subsequent model years, it also includes any other on-board electronic powertrain control unit containing software that has primary control over any of the monitors required by sections (e)(1.0) through (e)(15.0) and (e)(17.0) or has primary control over the diagnostics for more than two of the components required to be monitored by section (e)(16.0).

(9) “Diesel engines” refers to engines using a compression ignition thermodynamic cycle.

(10) “Driving cycle” consists of engine startup and engine shutoff and includes the period of engine off time up to the next engine startup. For vehicles that employ engine shutoff strategies (e.g., engine shutoff at idle), the manufacturer may request Executive Officer approval to use an alternate definition for driving cycle (e.g., key on and key off). Executive Officer approval of the alternate definition shall be based on equivalence to engine startup and engine shutoff signaling the beginning and ending of a single driving event for a conventional vehicle. Engine restarts following an engine shut-off that has been neither commanded by the vehicle operator nor by the engine control strategy but caused by an event such as an engine stall may be considered a new driving cycle or a continuation of the existing driving cycle.

(11) “Engine misfire” means lack of combustion in the cylinder due to absence of spark, poor fuel metering, poor compression, or any other cause. This does not include lack of combustion events in non-active cylinders due to default fuel shut-off or cylinder deactivation strategies.

(12) “Engine start” is defined as the point when the engine reaches a speed 150 rpm below the normal, warmed-up idle speed (as determined in the drive position for vehicles equipped with an automatic transmission). For hybrid vehicles or for

\(^1\) Unless otherwise noted, all section references refer to section 1968.2 of title 13, CCR.
engines employing alternate engine start hardware or strategies (e.g., integrated starter and generators, etc.), the manufacturer may request Executive Officer approval to use an alternate definition for engine start (e.g., ignition key “on”). Executive Officer approval of the alternate definition shall be based on equivalence to an engine start for a conventional vehicle.

(13) “Fault memory” means information pertaining to malfunctions stored in the onboard computer, including fault codes, stored engine conditions, and MIL status.

(14) “Federal Test Procedure (FTP) test” refers to an exhaust emission test conducted according to the test procedures incorporated by reference in title 13, CCR section 1961(d) that is used to determine compliance with the FTP standard to which a vehicle is certified.

(14.2) “FTP standard” refers to the certification tailpipe exhaust emission standards (both 50,000 mile and FTP full useful life standards) and test procedures applicable to the class to which the vehicle is certified.

(14.3) “FTP full useful life standard” refers to the FTP standard applicable when the vehicle reaches the end of its full useful life as defined in the certification requirements and test procedures incorporated by reference in title 13, CCR section 1961(d).

(15) “Fuel trim” refers to feedback adjustments to the base fuel schedule. Short-term fuel trim refers to dynamic or instantaneous adjustments. Long-term fuel trim refers to much more gradual adjustments to the fuel calibration schedule than short-term trim adjustments.

(16) “Functional check” for an output component or system means verification of proper response of the component and system to a computer command.

(17) “Key on, engine off position” refers to a vehicle with the ignition key in the engine run position (not engine crank or accessory position) but with the engine not running.

(18) “Light-duty truck” is defined in title 13, CCR section 1900 (b).

(19) “Low Emission Vehicle I application” refers to a vehicle or engine certified in California to the exhaust emission standards defined in title 13, CCR sections 1956.8(g), 1960.1(g)(1), and 1960.1(h)(1) for any of the following vehicle emission categories: Transitional Low Emission Vehicle (TLEV), Low Emission Vehicle (LEV), Ultra Low Emission Vehicle (ULEV), or Super Ultra Low Emission Vehicle (SULEV). Additionally, vehicles certified to Federal emission standards (bins) in California but categorized in a Low Emission Vehicle I vehicle emission category for purposes of calculating NMOG fleet average in accordance with the certification requirements and test procedures incorporated by reference in title 13, CCR section 1961 (d) are subject to all monitoring requirements applicable to Low
Emission Vehicle I applications but shall use the Federal tailpipe emission standard (i.e., the Federal bin) for purposes of determining the malfunction thresholds in section (e).

(19.1) “MDV SULEV vehicles” refer only to medium-duty Low Emission Vehicle I applications certified to the SULEV vehicle emission category.

(19.2) “TLEV vehicles” refer only to Low Emission Vehicle I applications certified to the TLEV vehicle emission category.

(19.3) “LEV vehicles” refer only to Low Emission Vehicle I applications certified to the LEV vehicle emission category.

(19.4) “ULEV vehicles” refer only to Low Emission Vehicle I applications certified to the ULEV vehicle emission category.

(20) “Low Emission Vehicle II application” refers to a vehicle or engine certified in California to the exhaust emission standards defined in title 13, CCR section 1961 for any of the following vehicle emission categories: LEV, ULEV, or SULEV. Additionally, except as provided for in section (e)(18.1.3), vehicles certified to Federal emission standards (bins) in California but categorized in a Low Emission Vehicle II vehicle emission category for purposes of calculating NMOG fleet average in accordance with the certification requirements and test procedures incorporated by reference in title 13, CCR section 1961 (d) are subject to all monitoring requirements applicable to Low Emission Vehicle II applications but shall use the Federal tailpipe emission standard (i.e., the Federal bin) for purposes of determining the malfunction thresholds in section (e).

(20.1) “PC/LDT SULEV II vehicles” refer only to passenger car and light-duty truck Low Emission Vehicle II applications certified to the SULEV vehicle emission category.

(20.2) “MDV SULEV II vehicles” refer only to medium-duty Low Emission Vehicle II applications certified to the SULEV vehicle emission category.

(20.3) “LEV II vehicles” refer only to Low Emission Vehicle II applications certified to the LEV vehicle emission category.

(20.4) “ULEV II vehicles” refer only to Low Emission Vehicle II applications certified to the ULEV vehicle emission category.

(21) “Malfunction” means any deterioration or failure of a component that causes the performance to be outside of the applicable limits in section (e).

(22) “Medium-duty vehicle” is defined in title 13, CCR section 1900 (b).

(22.1) “Medium-duty passenger vehicle” is defined in Title 40, Section 86.1803-01, Code of Federal Regulations.

(23) “Passenger car” is defined in title 13, CCR section 1900 (b).

(24) “Pending fault code” is defined as the diagnostic trouble code stored upon the initial detection of a malfunction (e.g., typically on a single driving cycle) prior to illumination of the MIL in accordance with the requirements of section (e) and (f)(4.4).

(25) “Percentage of misfire” as used in (e)(3.2) means the percentage of misfires out of the total number of firing events for the specified interval.

(26) “Power Take-Off (PTO) unit” refers to an engine driven output provision for the purposes of powering auxiliary equipment (e.g., a dump-truck bed, aerial bucket, or tow-truck winch).
“Rationality fault diagnostic” for an input component means verification of the accuracy of the input signal while in the range of normal operation and when compared to all other available information.

“Redline engine speed” shall be defined by the manufacturer as either the recommended maximum engine speed as normally displayed on instrument panel tachometers or the engine speed at which fuel shutoff occurs.

“Response rate” for oxygen sensors refers to the delay between a switch of the sensor from lean to rich or vice versa in response to a commanded change in air/fuel ratio.

“SC03 emission standards” refers to the certification tailpipe exhaust emission standards for the air conditioning (A/C) test of the Supplemental Federal Test Procedure Off-Cycle Emission Standards specified in title 13, CCR section 1961(a) applicable to the class to which the vehicle is certified.

“Secondary air” refers to air introduced into the exhaust system by means of a pump or aspirator valve or other means that is intended to aid in the oxidation of HC and CO contained in the exhaust gas stream.

“Similar conditions” as used in sections (e)(3) and (e)(6) means engine conditions having an engine speed within 375 rpm, load conditions within 20 percent, and the same warm-up status (i.e., cold or hot) as the engine conditions stored pursuant to (e)(3.4.4) and (e)(6.4.5). The Executive Officer may approve other definitions of similar conditions based on comparable timeliness and reliability.

“Small volume manufacturer” is defined in title 13, CCR section 1900(b). However, for a manufacturer that transitions from a small volume manufacturer to a non-small volume manufacturer, the manufacturer is still considered a small volume manufacturer for the first three model years that it no longer meets the definition in title 13, CCR section 1900(b).

“Unified cycle” is defined in “Speed Versus Time Data for California’s Unified Driving Cycle”, dated December 12, 1996, incorporated by reference.

“US06 cycle” refers to the driving schedule in CFR 40, Appendix 1, Part 86, section (g) entitled, “EPA US06 Driving Schedule for Light-Duty Vehicles and Light-Duty Trucks.”

“Warm-up cycle” means sufficient vehicle operation such that the coolant temperature has risen by at least 40 degrees Fahrenheit from engine starting and reaches a minimum temperature of at least 160 degrees Fahrenheit (140 degrees Fahrenheit for applications with diesel engines).

(d) GENERAL REQUIREMENTS
Section (d) sets forth the general requirements of the OBD II system. Specific performance requirements for components and systems that shall be monitored are set forth in section (e) below.

(1) The OBD II System.

(1.1) If a malfunction is present as specified in section (e), the OBD II system shall detect the malfunction, store a pending or confirmed fault code in the onboard computer's memory, and illuminate the MIL as required.

(1.2) The OBD II system shall be equipped with a standardized data link connector to provide access to the stored fault codes as specified in section (f).
(1.3) The OBD II system shall be designed to operate, without any required scheduled maintenance, for the actual life of the vehicle in which it is installed and may not be programmed or otherwise designed to deactivate based on age and/or mileage of the vehicle during the actual life of the vehicle.

(1.4) Computer-coded engine operating parameters may not be changeable without the use of specialized tools and procedures (e.g. soldered or potted computer components or sealed (or soldered) computer enclosures). Subject to Executive Officer approval, manufacturers may exempt from this requirement those product lines that are unlikely to require protection. Criteria to be evaluated in making an exemption include current availability of performance chips, high performance capability of the vehicle, and sales volume.

(2) MIL and Fault Code Requirements.

(2.1) MIL Specifications.

(2.1.1) The MIL shall be located on the driver's side instrument panel and be of sufficient illumination and location to be readily visible under all lighting conditions and shall be amber in color when illuminated. The MIL, when illuminated, shall display the phrase “Check Engine” or “Service Engine Soon”. The word “Powertrain” may be substituted for “Engine” in the previous phrases. Alternatively, the International Standards Organization (ISO) engine symbol may be substituted for the word “Engine” or for the entire phrase.

(2.1.2) The MIL shall illuminate in the key on, engine off position before engine cranking to indicate that the MIL is functional. For all 2005 and subsequent model year vehicles, the MIL shall continuously illuminate during this functional check for a minimum of 15-20 seconds. During this functional check of the MIL, the data stream value for MIL status shall indicate commanded off (see section (f)(4.2)) unless the MIL has also been commanded on for a detected malfunction. This functional check of the MIL is not required during vehicle operation in the key on, engine off position subsequent to the initial engine cranking of each driving cycle (e.g., due to an engine stall or other non-commanded engine shutoff).

(2.1.3) The MIL shall also illuminate within 10 seconds to inform the vehicle operator whenever the powertrain enters a default or “limp home” mode of operation that can affect emissions or the performance of the OBD II system or in the event of a malfunction of an on-board computer(s) itself that can affect the performance of the OBD II system. If the default or “limp home” mode of operation is recoverable (i.e., operation automatically returns to normal at the beginning of the following driving cycle), the OBD II system may wait and illuminate the MIL only if the default or “limp home” mode of operation is again entered before the end of the next driving cycle in lieu of illuminating the MIL within 10 seconds on the first driving cycle where the default or “limp home” mode of operation is entered.

(2.1.4) At the manufacturer's option, the MIL may be used to indicate readiness status in a standardized format (see section (f)(4.1.3)) in the key on, engine off position.
(2.1.5) A manufacturer may request Executive Officer approval to also use the MIL to indicate which, if any, fault codes are currently stored (e.g., to “blink” the stored codes) in the key on, engine off position. The Executive Officer shall approve the request if the manufacturer demonstrates that the method used to indicate the fault codes will not be activated during a California Inspection and Maintenance test or during routine driver operation.

(2.1.6) The MIL may not be used for any purpose other than specified in this regulation.

(2.2) MIL Illumination and Fault Code Storage Protocol.

(2.2.1) Upon detection of a malfunction, the OBD system shall store a pending fault code within ten seconds indicating the likely area of the malfunction and “freeze frame” engine conditions (as defined in section (f)(4.3)) present at the time the malfunction occurs.

(2.2.2) After storage of a pending fault code, if the identified malfunction is again detected before the end of the next driving cycle in which monitoring occurs, the MIL shall illuminate continuously and a confirmed fault code shall be stored within 10 seconds. If a malfunction is not detected before the end of the next driving cycle in which monitoring occurs (i.e., there is no indication of the malfunction at any time during the driving cycle), the corresponding pending fault code and “freeze frame” conditions set according to section (d)(2.2.1) shall be erased at the end of the driving cycle.

(2.2.3) A manufacturer may request Executive Officer approval to employ alternate statistical MIL illumination and fault code storage protocols to those specified in these requirements. The Executive Officer shall grant approval if the manufacturer provides data and/or engineering evaluation that adequately demonstrate that the alternative protocols can evaluate system performance and detect malfunctions in a manner that is equally effective and timely. Except as otherwise provided in section (e) for evaporative system malfunctions, strategies requiring on average more than six driving cycles for MIL illumination may not be accepted.

(2.2.4) Regarding “freeze frame” conditions, a manufacturer may store “freeze frame” engine conditions in conjunction with storing a confirmed fault code in lieu of a pending fault code as required in sections (d)(2.2.1), (e)(3.4), and (e)(6.4).

(2.3) Extinguishing the MIL.

Except as otherwise provided in sections (e)(3.4.5) and (e)(6.4.6) for misfire and fuel system malfunctions, once the MIL has been illuminated it may be extinguished after three subsequent sequential driving cycles during which the monitoring system responsible for illuminating the MIL functions and the previously detected malfunction is no longer present provided no other malfunction has been detected that would independently illuminate the MIL according to the requirements outlined above.

(2.4) Erasing a confirmed fault code.

The OBD II system may erase a confirmed fault code if the identified malfunction has not been again detected in at least 40 engine warm-up cycles, and the MIL is presently not illuminated for that malfunction.
(3) Monitoring Conditions.
Section (d)(3) sets forth the general monitoring requirements while section (e) sets forth the specific monitoring requirements as well as identifies which of the following general monitoring requirements in section (d)(3) are applicable for each monitored component or system identified in section (e).

(3.1) For all 2004 and subsequent model year vehicles:

(3.1.1) As specifically provided for in section (e), manufacturers shall define monitoring conditions, subject to Executive Officer approval, for detecting malfunctions identified in section (e). The Executive Officer shall approve manufacturer defined monitoring conditions that are determined (based on manufacturer submitted data and/or other engineering documentation) to be:
- technically necessary to ensure robust detection of malfunctions (e.g., avoid false passes and false detection of malfunctions), designed to ensure monitoring will occur under conditions which may reasonably be expected to be encountered in normal urban vehicle operation and use, and designed to ensure monitoring will occur during the FTP cycle or Unified cycle.

(3.1.2) Monitoring shall occur at least once per driving cycle in which the monitoring conditions are met.

(3.1.3) Manufacturers may request Executive Officer approval to define monitoring conditions that are not encountered during the FTP cycle or Unified cycle as required in section (d)(3.1.1). In evaluating the manufacturer’s request, the Executive Officer shall consider the degree to which the requirement to run during the FTP or Unified cycle restricts in-use monitoring, the technical necessity for defining monitoring conditions that are not encountered during the FTP or Unified cycle, data and/or an engineering evaluation submitted by the manufacturer which adequately demonstrate that the component/system does not normally function, or monitoring is otherwise not feasible, during the FTP or Unified cycle, and, where applicable in section (d)(3.2), the ability of the manufacturer to demonstrate the monitoring conditions will satisfy the minimum acceptable in-use monitor performance ratio requirement as defined in section (d)(3.2).

(3.2) As specifically provided for in section (e), manufacturers shall define monitoring conditions in accordance with the criteria in sections (d)(3.2.1) through (3.2.3). The requirements of section (d)(3.2) shall be phased in as follows: 50 percent of all 2005 model year vehicles, 75 percent of all 2006 model year vehicles, and 100 percent of all 2007 and subsequent model year vehicles. Manufacturers may use an alternate phase-in schedule in lieu of the required phase-in schedule if the alternate phase-in schedule provides for equivalent compliance volume as defined in section (c) with the exception that 100 percent of 2007 and subsequent model year vehicles shall comply with the requirements.

(3.2.1) Manufacturers shall define monitoring conditions that, in addition to meeting the criteria in section (d)(3.1), ensure that the monitor yields an in-use performance ratio (as defined in section (d)(4)) that meets or exceeds the minimum acceptable in-use monitor performance ratio on in-use vehicles. For purposes of this regulation, the minimum acceptable in-use monitor performance ratio is:
(A) 0.260 for secondary air system monitors and other cold start related monitors utilizing a denominator incremented in accordance with section (d)(4.3.2)(E);
(B) For evaporative system monitors:
 (i) 0.260 for monitors designed to detect malfunctions identified in section (e)(4.2.2)(C) (i.e., 0.020 inch leak detection); and
 (ii) 0.520 for monitors designed to detect malfunctions identified in section (e)(4.2.2)(A) and (B) (i.e., purge flow and 0.040 inch leak detection); and
(C) 0.336 for catalyst, oxygen sensor, EGR, VVT system, and all other monitors specifically required in section (e) to meet the monitoring condition requirements of section (d)(3.2).

(3.2.2) In addition to meeting the requirements of section (d)(3.2.1), manufacturers shall implement software algorithms in the OBD II system to individually track and report in-use performance of the monitors in the standardized format specified in section (d)(5) for each of the following component monitors:
 a. Catalyst (section (e)(1.3) or, where applicable, (e)(1.5.3))
 b. Oxygen sensor (section (e)(7.3.1)(A))
 c. Evaporative system (section (e)(4.3.2))
 d. EGR system (section (e)(8.3.1)) and VVT system (section (e)(13.3))
 e. Secondary air system (section (e)(5.3.2)(B))
The OBD II system is not required to track and report in-use performance for monitors other than those specifically identified above.

(3.2.3) Manufacturers may not use the calculated ratio (or any element thereof) or any other indication of monitor frequency as a monitoring condition for any monitor (e.g., using a low ratio to enable more frequent monitoring through diagnostic executive priority or modification of other monitoring conditions, or using a high ratio to enable less frequent monitoring).

(4) In-Use Monitor Performance Ratio Definition
(4.1) For monitors required to meet the minimum in-use monitor performance ratio in section (d)(3.2.1), the ratio shall be calculated in accordance with the following specifications for the numerator, denominator, and ratio.
(4.2) Numerator Specifications
 (4.2.1) Definition: The numerator is defined as a measure of the number of times a vehicle has been operated such that all monitoring conditions necessary for a specific monitor to detect a malfunction have been encountered.
 (4.2.2) Specifications for incrementing:
 (A) Except as provided for in section (d)(4.2.2)(F), the numerator, when incremented, shall be incremented by an integer of one. The numerator may not be incremented more than once per driving cycle.
 (B) The numerator for a specific monitor shall be incremented within ten seconds if and only if the following criteria are satisfied on a single driving cycle:
 (i) Every monitoring condition necessary for the monitored component to detect a malfunction and store a pending fault code has been satisfied, including enable criteria, presence or absence of related fault codes, sufficient length of monitoring time, and diagnostic executive
priority assignments (e.g., diagnostic “A” must execute prior to diagnostic “B”, etc.). For the purpose of incrementing the numerator, satisfying all the monitoring conditions necessary for a monitor to determine the component is passing may not, by itself, be sufficient to meet this criteria;

(ii) For monitors that require multiple stages or events in a single driving cycle to detect a malfunction, every monitoring condition necessary for all events to have completed must be satisfied;

(iii) For monitors that require intrusive operation of components to detect a malfunction, a manufacturer shall request Executive Officer approval of the strategy used to determine that, had a malfunction been present, the monitor would have detected the malfunction. Executive Officer approval of the request shall be based on the equivalence of the strategy to actual intrusive operation and the ability of the strategy to accurately determine if every monitoring condition necessary for the intrusive event to occur was satisfied.

(iv) In addition to the requirements of section (d)(4.2.2)(B)(i) through (iii) above, the secondary air system monitor numerator(s) shall be incremented if and only if the criteria in section (B) above have been satisfied during normal operation of the secondary air system for vehicles that require monitoring during normal operation (sections (e)(5.2.2) through (5.2.4)). Monitoring during intrusive operation of the secondary air system later in the same driving cycle solely for the purpose of monitoring may not, by itself, be sufficient to meet this criteria.

(C) For monitors that can generate results in a “gray zone” or “non-detection zone” (i.e., results that indicate neither a passing system nor a malfunctioning system) or in a “non-decision zone” (e.g., monitors that increment and decrement counters until a pass or fail threshold is reached), the manufacturer shall submit a plan for appropriate incrementing of the numerator to the Executive Officer for review and approval. In general, the Executive Officer shall not approve plans that allow the numerator to be incremented when the monitor indicates a result in the “non-detection zone” or prior to the monitor reaching a decision. In reviewing the plan for approval, the Executive Officer shall consider data and/or engineering evaluation submitted by the manufacturer demonstrating the expected frequency of results in the “non-detection zone” and the ability of the monitor to accurately determine if a monitor would have detected a malfunction instead of a result in the “non-detection zone” had an actual malfunction been present.

(D) For monitors that run or complete during engine off operation, the numerator shall be incremented within 10 seconds of engine start on the subsequent driving cycle.

(E) Manufacturers utilizing alternate statistical MIL illumination protocols as allowed in section (d)(2.2.3) for any of the monitors requiring a numerator shall submit a plan for appropriate incrementing of the numerator to the Executive Officer for review and approval. Executive Officer approval of the plan shall be conditioned upon the manufacturer providing supporting data
and/or engineering evaluation for the proposed plan, the equivalence of the incrementing in the manufacturer’s plan to the incrementing specified in section (d)(4.2.2) for monitors using the standard MIL illumination protocol, and the overall equivalence of the manufacturer’s plan in determining that the minimum acceptable in-use performance ratio in section (d)(3.2.1) is satisfied.

(4.3) Denominator Specifications

(4.3.1) Definition: The denominator is defined as a measure of the number of times a vehicle has been operated as defined in (d)(4.3.2).

(4.3.2) Specifications for incrementing:

(A) The denominator, when incremented, shall be incremented by an integer of one. The denominator may not be incremented more than once per driving cycle.

(B) The denominator for each monitor shall be incremented within ten seconds if and only if the following criteria are satisfied on a single driving cycle:

(i) Cumulative time since engine start is greater than or equal to 600 seconds while at an elevation of less than 8,000 feet above sea level and at an ambient temperature of greater than or equal to 20 degrees Fahrenheit;

(ii) Cumulative vehicle operation at or above 25 miles per hour occurs for greater than or equal to 300 seconds while at an elevation of less than 8,000 feet above sea level and at an ambient temperature of greater than or equal to 20 degrees Fahrenheit;

(iii) Continuous vehicle operation at idle (i.e., accelerator pedal released by driver and vehicle speed less than or equal to one mile per hour) for greater than or equal to 30 seconds while at an elevation of less than 8,000 feet above sea level and at an ambient temperature of greater than or equal to 20 degrees Fahrenheit;

(C) In addition to the requirements of section (d)(4.3.2)(B) above, the secondary air system monitor denominator(s) shall be incremented if and only if commanded “on” operation of the secondary air system occurs for a time greater than or equal to ten seconds. For purposes of determining this commanded “on” time, the OBD II system may not include time during intrusive operation of the secondary air system solely for the purposes of monitoring;

(D) In addition to the requirements of section (d)(4.3.2)(B) above, the evaporative system monitor denominator(s) shall be incremented if and only if:

(i) Cumulative time since engine start is greater than or equal to 600 seconds while at an ambient temperature of greater than or equal to 40 degrees Fahrenheit but less than or equal to 95 degrees Fahrenheit;

(ii) Engine cold start occurs with engine coolant temperature at engine start greater than or equal to 40 degrees Fahrenheit but less than or equal to 95 degrees Fahrenheit and less than or equal to 12 degrees Fahrenheit higher than ambient temperature at engine start.

(E) In addition to the requirements of section (d)(4.3.2)(B) above, the
denominator(s) for the following monitors shall be incremented if and only if the component or strategy is commanded “on” for a time greater than or equal to ten seconds:
(i) Heated catalyst (section (e)(2))
(ii) Cold Start Emission Reduction Strategy (section (e)(11))
(iii) Components or systems that operate only at engine start-up (e.g., glow plugs, intake air heaters, etc.) and are subject to monitoring under “other emission control or source devices” (section (e)(17)) or comprehensive component output components (section (e)(16))

For purposes of determining this commanded “on” time, the OBD II system may not include time during intrusive operation of any of the components or strategies later in the same driving cycle solely for the purposes of monitoring.

(F) In addition to the requirements of section (d)(4.3.2)(B) above, the denominator(s) for the following monitors of output components (except those operated only at engine start-up and subject to the requirements of the previous section (d)(4.3.2)(E)) shall be incremented if and only if the component is commanded to function (e.g., commanded “on”, “open”, “closed”, “locked”, etc.) on two or more occasions during the driving cycle or for a time greater than or equal to ten seconds, whichever occurs first:
(i) Air conditioning system (section (e)(12))
(ii) “Other emission control or source device” (section (e)(17))
(iii) Comprehensive component output component (section (e)(16)) (e.g., turbocharger waste-gates, variable length manifold runners, torque converter clutch lock-up solenoids, etc.)

(G) For hybrid vehicles, vehicles that employ alternate engine start hardware or strategies (e.g., integrated starter and generators), or alternate fuel vehicles (e.g., dedicated, bi-fuel, or dual-fuel applications), the manufacturer may request Executive Officer approval to use alternate criteria to the criteria in section (d)(4.3.2)(B) above for incrementing the denominator. In general, the Executive Officer shall not approve alternate criteria for vehicles that only employ engine shut off at or near idle/vehicle stop conditions. Executive Officer approval of the alternate criteria shall be based on the equivalence of the alternate criteria to determine the amount of vehicle operation relative to the measure of conventional vehicle operation in accordance with the criteria in section (d)(4.3.2)(B) above.

(4.4) **Ratio Specifications**

(4.4.1) **Definition:** The ratio is defined as the numerator divided by the denominator.

(4.5) **Disablement of Numerators and Denominators**

(4.5.1) **Within ten seconds of a malfunction that disables a monitor required to meet the monitoring conditions in section (d)(3.2.1) being detected (i.e., a pending or confirmed code is stored), the OBD II system shall disable further incrementing of the corresponding numerator and denominator for each monitor that is disabled. When the malfunction is no longer detected (i.e., the pending code is erased through self-clearing or through a scan tool command), incrementing of all corresponding numerators and denominators...**
shall resume within ten seconds.

(4.5.2) Within ten seconds of the start of a PTO (see section (c)) operation that disables a monitor required to meet the monitoring conditions in section (d)(3.2.1), the OBD II system shall disable further incrementing of the corresponding numerator and denominator for each monitor that is disabled. When the PTO operation ends, incrementing of all corresponding numerators and denominators shall resume within ten seconds.

(4.5.3) The OBD II system shall disable further incrementing of all numerators and denominators within ten seconds if a malfunction of any component used to determine if the criteria in sections (d)(4.3.2)(B) through (D) are satisfied (i.e., vehicle speed, ambient temperature, elevation, idle operation, engine cold start, or time of operation) has been detected and the corresponding pending fault code has been stored. Incrementing of all numerators and denominators shall resume within ten seconds when the malfunction is no longer present (e.g., pending code erased through self-clearing or by a scan tool command).

(5) Standardized tracking and reporting of monitor performance

(5.1) For monitors required to track and report in-use monitor performance in section (d)(3.2.2), the performance data shall be tracked and reported in accordance with the specifications in sections (d)(4), (d)(5), and (f)(5). The OBD II system shall separately report an in-use monitor performance numerator and denominator for each of the following components: catalyst bank 1, catalyst bank 2, primary oxygen sensor bank 1, primary oxygen sensor bank 2, evaporative 0.020 inch leak detection system, EGR/VVT system, and secondary air system. The OBD II system shall also report a general denominator and an ignition cycle counter in the standardized format specified in sections (d)(5.5), (d)(5.6) and (f)(5).

(5.2) Numerator

(5.2.1) The OBD II system shall report a separate numerator for each of the components listed in section (d)(5.1).

(5.2.2) For specific components or systems that have multiple monitors that are required to be reported under section (e) (e.g., oxygen sensor bank 1 may have multiple monitors for sensor response or other sensor characteristics), the OBD II system shall separately track numerators and denominators for each of the specific monitors and report only the corresponding numerator and denominator for the specific monitor that has the lowest numerical ratio. If two or more specific monitors have identical ratios, the corresponding numerator and denominator for the specific monitor that has the highest denominator shall be reported for the specific component.

(5.2.3) The numerator(s) shall be reported in accordance with the specifications in section (f)(5.2.1).

(5.3) Denominator

(5.3.1) The OBD II system shall report a separate denominator for each of the components listed in section (d)(5.1).

(5.3.2) The denominator(s) shall be reported in accordance with the specifications in section (f)(5.2.1).
(5.4) Ratio
(5.4.1) For purposes of determining which corresponding numerator and denominator to report as required in section (d)(5.2.2), the ratio shall be calculated in accordance with the specifications in section (f)(5.2.2).

(5.5) Ignition cycle counter
(5.5.1) Definition:
(A) The ignition cycle counter is defined as a counter that indicates the number of ignition cycles a vehicle has experienced as defined in section (d)(5.5.2)(B).
(B) The ignition cycle counter shall be reported in accordance with the specifications in section (f)(5.2.1).

(5.5.2) Specifications for incrementing:
(A) The ignition cycle counter, when incremented, shall be incremented by an integer of one. The ignition cycle counter may not be incremented more than once per driving cycle.
(B) The ignition cycle counter shall be incremented within ten seconds if and only if the vehicle meets the engine start definition (see section (c)) for at least one second.
(C) The OBD II system shall disable further incrementing of the ignition cycle counter within ten seconds if a malfunction of any component used to determine if the criteria in section (d)(5.5.2)(B) are satisfied (i.e., engine speed or time of operation) has been detected and the corresponding pending fault code has been stored. The ignition cycle counter may not be disabled from incrementing for any other condition. Incrementing of the ignition cycle counter shall resume within ten seconds when the malfunction is no longer present (e.g., pending code erased through self-clearing or by a scan tool command).

(5.6) General Denominator
(5.6.1) Definition:
(A) The general denominator is defined as a measure of the number of times a vehicle has been operated as defined in section (d)(5.6.2)(B).
(B) The general denominator shall be reported in accordance with the specifications in section (f)(5.2.1).

(5.6.2) Specifications for incrementing:
(A) The general denominator, when incremented, shall be incremented by an integer of one. The general denominator may not be incremented more than once per driving cycle.
(B) The general denominator shall be incremented within ten seconds if and only if the criteria identified in section (d)(4.3.2)(B) are satisfied on a single driving cycle.
(C) The OBD II system shall disable further incrementing of the general denominator within ten seconds if a malfunction of any component used to determine if the criteria in section (d)(4.3.2)(B) are satisfied (i.e., vehicle speed, ambient temperature, elevation, idle operation, or time of operation) has been detected and the corresponding pending fault code has been stored. The general denominator may not be disabled from incrementing for
any other condition (e.g., the disablement criteria in sections (d)(4.5.1) and (d)(4.5.2) may not disable the general denominator). Incrementing of the general denominator shall resume within ten seconds when the malfunction is no longer present (e.g., pending code erased through self-clearing or by a scan tool command).

(6) Enforcement Testing

(6.1) The procedures used to assure compliance with the requirements of title 13, CCR section 1968.2 are set forth in title 13, CCR section 1968.5.

(6.2) Consistent with the requirements of title 13, CCR section 1968.5(b)(4)(A) for enforcement OBD II emission testing, the manufacturer shall retain all test equipment (e.g., malfunction simulators, deteriorated “threshold” components, etc.) necessary to determine the malfunction criteria in section (e) for major monitors subject to OBD II emission testing as defined in title 13, CCR section 1968.5. To meet the requirements of this section, the manufacturers shall only be required to retain test equipment necessary to duplicate “threshold” testing performed by the manufacturer. This test equipment shall include, but is not limited to, aged “threshold” catalyst systems and computer equipment used to simulate misfire, oxygen sensor, fuel system, VVT system, and cold start reduction strategy system faults. This equipment shall be retained by the manufacturer until vehicles certified with the equipment exceed the applicable full useful life age (e.g., 10 years for vehicles certified to a full useful life of 10 years and 100,000 miles).

(e) MONITORING REQUIREMENTS

(1) CATALYST MONITORING

(1.1) Requirement: The OBD II system shall monitor the catalyst system for proper conversion capability.

(1.2) Malfunction Criteria:

(1.2.1) Low Emission Vehicle I applications: The OBD II system shall detect a catalyst system malfunction when the catalyst system’s conversion capability decreases to the point that either of the following occurs:

(A) Non-Methane Organic Gas (NMOG) emissions exceed 1.75 times the FTP full useful life standards to which the vehicle has been certified with NMOG emissions multiplied by the certification reactivity adjustment factor for the vehicle;

(B) The average FTP test Non-Methane Hydrocarbon (NMHC) conversion efficiency of the monitored portion of the catalyst system falls below 50 percent (i.e., the cumulative NMHC emissions measured at the outlet of the monitored catalyst(s) are more than 50 percent of the cumulative engine-out emissions measured at the inlet of the catalyst(s)). With Executive Officer approval, manufacturers may use a conversion efficiency malfunction criteria of less than 50 percent if the catalyst system is designed such that the monitored portion of the catalyst system must be replaced along with an adjacent portion of the catalyst system sufficient to ensure that the total portion replaced will meet the 50 percent conversion efficiency criteria. Executive Officer approval shall be based on data and/or engineering
evaluation demonstrating the conversion efficiency of the monitored portion and the total portion designed to be replaced, and the likelihood of the catalyst system design to ensure replacement of the monitored and adjacent portions of the catalyst system.

(1.2.2) Low Emission Vehicle II applications:

(A) 2004 model year vehicles.
 (i) All LEV II, ULEV II, and MDV SULEV II vehicles shall use the malfunction criteria specified for Low Emission Vehicle I applications in section (e)(1.2.1).
 (ii) All PC/LDT SULEV II vehicles shall use the malfunction criteria specified for Low Emission Vehicle I applications in section (e)(1.2.1) except the malfunction criterion in paragraph (e)(1.2.1)(A) shall be 2.5 times the applicable FTP full useful life NMOG standard.

(B) Except as provided below in section (e)(1.2.4), for 2005 and 2006 model years, the OBD II system shall detect a catalyst system malfunction when the catalyst system’s conversion capability decreases to the point that any of the following occurs:
 (i) For LEV II, ULEV II, and MDV SULEV II vehicles.
 a. NMOG emissions exceed the criteria specified for Low Emission Vehicle I applications in section (e)(1.2.1)(A).
 b. The average FTP test NMHC conversion efficiency is below the criteria specified for Low Emission Vehicle I applications in section (e)(1.2.1)(B).
 c. Oxides of nitrogen (NOx) emissions exceed 3.5 times the FTP full useful life NOx standard to which the vehicle has been certified.
 (ii) PC/LDT SULEV II vehicles shall use the same malfunction criteria as 2005 and 2006 model year LEV II, ULEV II, and MDV SULEV II vehicles (section (e)(1.2.2)(B)(i)) except the malfunction criteria in paragraph a shall be 2.5 times the applicable FTP full useful life NMOG standard.

(C) Except as provided below in section (e)(1.2.5), for 2007 and subsequent model years, the OBD II system shall detect a catalyst system malfunction when the catalyst system’s conversion capability decreases to the point that any of the following occurs:
 (i) For LEV II, ULEV II, and MDV SULEV II vehicles.
 a. NMOG emissions exceed the criteria specified for Low Emission Vehicle I applications in section (e)(1.2.1)(A).
 b. The average FTP test NMHC conversion efficiency is below the criteria specified for Low Emission Vehicle I applications in section (e)(1.2.1)(B).
 c. NOx emissions exceed 1.75 times the FTP full useful life NOx standard to which the vehicle has been certified.
 (ii) For PC/LDT SULEV II vehicles.
 a. NMOG emissions exceed 2.5 times the applicable FTP full useful life NMOG standard to which the vehicle has been certified.
b. The average FTP test NMHC conversion efficiency is below the criteria specified for Low Emission Vehicle I applications in section (e)(1.2.1)(B).

c. NOx emissions exceed 2.5 times the applicable FTP full useful life NOx standard to which the vehicle has been certified.

(1.2.3) Non-Low Emission Vehicle I or II applications: The OBD II system shall detect a catalyst system malfunction when the catalyst system’s conversion capability decreases to the point that NMHC emissions increase by more than 1.5 times the applicable FTP full useful life standards over an FTP test performed with a representative 4000 mile catalyst system.

(1.2.4) In lieu of using the malfunction criteria in section (e)(1.2.2)(B) for all 2005 and 2006 model year Low Emission Vehicle II applications, a manufacturer may phase-in the malfunction criteria only on Low Emission Vehicle II applications such that at least 30% of all 2005 model year vehicles and 60% of all 2006 model year vehicles use the malfunction criteria. For 2005 and 2006 model year Low Emission Vehicle II applications not included in the phase-in, the malfunction criteria in section (e)(1.2.2)(A) shall be used.

(1.2.5) In lieu of using the malfunction criteria in section (e)(1.2.2)(C) for all 2007 model year Low Emission Vehicle II applications, for the 2007 model year only, a manufacturer may continue to use the malfunction criteria in section (e)(1.2.2)(B) for any Low Emission Vehicle II applications previously certified in the 2005 or 2006 model year to the malfunction criteria in section (e)(1.2.2)(B) and carried over to the 2007 model year.

(1.2.6) For purposes of determining the catalyst system malfunction criteria in sections (e)(1.2.1), (1.2.2)(A), and (1.2.3), the malfunction criteria shall be established by using a catalyst system with all monitored catalysts simultaneously deteriorated to the malfunction criteria while unmonitored catalysts shall be deteriorated to the end of the vehicle’s full useful life.

(1.2.7) For purposes of determining the catalyst system malfunction criteria in sections (e)(1.2.2)(B) and (C):

(A) The manufacturer shall use a catalyst system deteriorated to the malfunction criteria using methods established by the manufacturer to represent real world catalyst deterioration under normal and malfunctioning operating conditions.

(B) Except as provided below in section (e)(1.2.7)(C), the malfunction criteria shall be established by using a catalyst system with all monitored and unmonitored (downstream of the sensor utilized for catalyst monitoring) catalysts simultaneously deteriorated to the malfunction criteria.

(C) For vehicles using fuel shutoff to prevent over-fueling during misfire conditions (see section (e)(3.4.1)(D)), the malfunction criteria shall be established by using a catalyst system with all monitored catalysts simultaneously deteriorated to the malfunction criteria while unmonitored catalysts shall be deteriorated to the end of the vehicle’s full useful life.

(1.3) Monitoring Conditions: Manufacturers shall define the monitoring conditions for malfunctions identified in section (e)(1.2) in accordance with sections (d)(3.1) and (d)(3.2) (i.e., minimum ratio requirements). For purposes of tracking and
reporting as required in section (d)(3.2.2), all monitors used to detect malfunctions identified in section (e)(1.2) shall be tracked separately but reported as a single set of values as specified in section (d)(5.2.2).

(1.4) MIL Illumination and Fault Code Storage:
(1.4.1) General requirements for MIL illumination and fault code storage are set forth in section (d)(2).
(1.4.2) The monitoring method for the catalyst(s) shall be capable of detecting when a catalyst fault code has been cleared (except OBD II system self-clearing), but the catalyst has not been replaced (e.g., catalyst overtemperature approaches may not be acceptable).

(1.5) CATALYST MONITORING FOR DIESELS
(1.5.1) Requirement: On all 2004 and subsequent model year diesel passenger cars, light-duty trucks, and medium-duty passenger vehicles (see section (c)) and all 2005 and subsequent model year medium-duty vehicles, the OBD II system shall monitor the catalyst system for proper conversion capability.
(1.5.2) Malfunction Criteria:
(A) For 2004 and subsequent model year diesel passenger cars, light-duty trucks, and medium-duty passenger vehicles:
(i) Except as provided below, the OBD II system shall detect a catalyst system malfunction when the catalyst system’s conversion capability decreases to the point that emissions exceed 1.5 times the applicable FTP full useful life NMHC, NOx, or PM standard.
(ii) For the 2004 through 2009 model year, a manufacturer may request to be exempted from the requirements for NMHC conversion catalyst system monitoring. The Executive Officer shall approve the request if the manufacturer has demonstrated, through data and/or engineering evaluation, that the average FTP test NMHC conversion efficiency of the system is less than 30 percent (i.e., the cumulative NMHC emissions measured at the outlet of the catalyst are more than 70 percent of the cumulative engine-out NMHC emissions measured at the inlet of the catalyst(s)).
(iii) For the 2004 through 2009 model year, a manufacturer may request to be exempted from the requirements for NOx conversion catalyst system monitoring. The Executive Officer shall approve the request if the manufacturer has demonstrated, through data and/or engineering evaluation, that the average FTP test NOx conversion efficiency of the system is less than 30 percent (i.e., the cumulative NOx emissions measured at the outlet of the catalyst are more than 70 percent of the cumulative engine-out NOx emissions measured at the inlet of the catalyst(s)).
(iv) For vehicles not exempted from NMHC conversion efficiency monitoring under the provisions of section (e)(1.5.2)(A)(ii), if no failure or deterioration of the catalyst system NMHC conversion capability could result in a vehicle’s emissions exceeding 1.5 times any of the applicable...
standards, the OBD II system shall detect a malfunction when the system has no detectable amount of NMHC conversion capability.

(v) For vehicles not exempted from NOx conversion efficiency monitoring under the provisions of section (e)(1.5.2)(A)(iii), if no failure or deterioration of the catalyst system NOx conversion capability could result in a vehicle's emissions exceeding 1.5 times any of the applicable standards, the OBD II system shall detect a malfunction when the system has no detectable amount of NOx conversion capability.

(B) For 2005 and 2006 model year diesel medium-duty vehicles (except medium-duty passenger vehicles):

(i) Except as provided below, the OBD II system shall detect a NOx conversion catalyst system malfunction when the catalyst system's conversion capability decreases to the point that emissions exceed 1.5 times the applicable FTP full useful life NOx or PM standard (or, if applicable, NMHC+NOx standard).

(ii) A manufacturer may request to be exempted from the requirements for NOx conversion catalyst system monitoring. The Executive Officer shall approve the request if the manufacturer has demonstrated, through data and/or engineering evaluation, that no failure or deterioration of the system will cause emissions to exceed the emission threshold specified in section (e)(1.5.2)(B)(i).

(iii) Monitoring of the NMHC conversion catalyst system performance is not required.

(C) For 2007 and subsequent model year diesel medium-duty vehicles (except medium-duty passenger vehicles):

(i) Except as provided below, the OBD II system shall detect a catalyst system malfunction when the catalyst system's conversion capability decreases to the point that emissions exceed 1.5 times the applicable FTP full useful life NMHC, NOx, or PM standard (or, if applicable, NMHC+NOx standard).

(ii) For the 2007 through 2009 model year, a manufacturer may request to be exempted from the requirements for NMHC conversion catalyst system monitoring. The Executive Officer shall approve the request if the manufacturer has demonstrated, through data and/or engineering evaluation, that the average FTP test NMHC conversion efficiency of the system is less than 30 percent (i.e., the cumulative NMHC emissions measured at the outlet of the catalyst are more than 70 percent of the cumulative engine-out NMHC emissions measured at the inlet of the catalyst(s)).

(iii) For the 2007 through 2009 model year, a manufacturer may request to be exempted from the requirements for NOx conversion catalyst system monitoring. The Executive Officer shall approve the request if the manufacturer has demonstrated, through data and/or engineering evaluation, that the average FTP test NOx conversion efficiency of the system is less than 30 percent (i.e., the cumulative NOx emissions measured at the outlet of the catalyst are more than 70 percent of the...
cumulative engine-out NOx emissions measured at the inlet of the catalyst(s)).

(iv) For vehicles not exempted from NMHC conversion efficiency monitoring under the provisions of section (e)(1.5.2)(C)(ii), if no failure or deterioration of the catalyst system NMHC conversion capability could result in a vehicle’s emissions exceeding 1.5 times any of the applicable standards, the OBD II system shall detect a malfunction when the system has no detectable amount of NMHC conversion capability.

(v) For vehicles not exempted from NOx conversion efficiency monitoring under the provisions of section (e)(1.5.2)(C)(iii), if no failure or deterioration of the catalyst system NOx conversion capability could result in a vehicle’s emissions exceeding 1.5 times any of the applicable standards, the OBD II system shall detect a malfunction when the system has no detectable amount of NOx conversion capability.

(1.5.3) Monitoring Conditions: Manufacturers shall define the monitoring conditions for malfunctions identified in section (e)(1.5.2) in accordance with sections (d)(3.1) and (d)(3.2) (i.e., minimum ratio requirements). For purposes of tracking and reporting as required in section (d)(3.2.2), all monitors used to detect malfunctions identified in section (e)(1.5.2) shall be tracked separately but reported as a single set of values as specified in section (d)(5.2.2).

(1.5.4) MIL Illumination and Fault Code Storage:
(A) General requirements for MIL illumination and fault code storage are set forth in section (d)(2).
(B) The monitoring method for the reduction catalyst(s) shall be capable of detecting all instances, except diagnostic self-clearing, when a catalyst fault code has been cleared but the catalyst has not been replaced (e.g., catalyst overtemperature approaches may not be acceptable).

(2) HEATED CATALYST MONITORING
(2.1) Requirement:
(2.1.1) The OBD II system shall monitor all heated catalyst systems for proper heating.
(2.1.2) The efficiency of heated catalysts shall be monitored in conjunction with the requirements of section (e)(1).

(2.2) Malfunction Criteria:
(2.2.1) The OBD II system shall detect a catalyst heating system malfunction when the catalyst does not reach its designated heating temperature within a requisite time period after engine starting. The manufacturer shall determine the requisite time period, but the time period may not exceed the time that would cause emissions from a vehicle equipped with the heated catalyst system to exceed 1.75 times any of the applicable FTP full useful life standards.

(2.2.2) Manufacturers may use other monitoring strategies for the heated catalyst but must submit the alternate plan to the Executive Officer for approval. The Executive Officer shall approve alternate strategies for monitoring heated
catalyst systems based on comparable reliability and timeliness to these requirements in detecting a catalyst heating malfunction.

(2.3) Monitoring Conditions: Manufacturers shall define the monitoring conditions for malfunctions identified in section (e)(2.2) in accordance with sections (d)(3.1) and (d)(3.2) (i.e., minimum ratio requirements).

(2.4) MIL Illumination and Fault Code Storage: General requirements for MIL illumination and fault code storage are set forth in section (d)(2).

(3) MISFIRE MONITORING

(3.1) Requirement:

(3.1.1) The OBD II system shall monitor the engine for misfire causing catalyst damage and misfire causing excess emissions.

(3.1.2) The OBD II system shall identify the specific cylinder that is experiencing misfire. Manufacturers may request Executive Officer approval to store a general misfire fault code instead of a cylinder specific fault code under certain operating conditions provided the manufacturer submits data and/or an engineering evaluation that adequately demonstrate that the misfiring cylinder cannot be reliably identified when the conditions occur.

(3.1.3) If more than one cylinder is misfiring, a separate fault code shall be stored indicating that multiple cylinders are misfiring except as allowed below. When identifying multiple cylinder misfire, the manufacturer is not required to also identify each of the misfiring cylinders individually through separate fault codes. For 2005 and subsequent model year vehicles, if more than 90 percent of the detected misfires occur in a single cylinder, the manufacturer may elect to store the appropriate fault code indicating the specific misfiring cylinder in lieu of the multiple cylinder misfire fault code. If, however, two or more cylinders individually have more than 10 percent of the total number of detected misfires, a multiple cylinder fault code must be stored.

(3.2) Malfunction Criteria: The OBD II system shall detect a misfire malfunction pursuant to the following:

(3.2.1) Misfire causing catalyst damage:

(A) Manufacturers shall determine the percentage of misfire evaluated in 200 revolution increments for each engine speed and load condition that would result in a temperature that causes catalyst damage. The manufacturer shall submit documentation to support this percentage of misfire as required in section (h)(2.5). For every engine speed and load condition that this percentage of misfire is determined to be lower than five percent, the manufacturer may set the malfunction criteria at five percent.

(B) Subject to Executive Officer approval, a manufacturer may employ a longer interval than 200 revolutions but only for determining, on a given driving cycle, the first misfire exceedance as provided in section (e)(3.4.1)(A) below. Executive Officer approval shall be conditioned upon the manufacturer submitting data and/or an engineering evaluation that adequately demonstrate that catalyst damage would not occur due to unacceptably high catalyst temperatures before the interval has elapsed.
(C) A misfire malfunction shall be detected if the percentage of misfire established in section (e)(3.2.1)(A) is exceeded.

(D) For purposes of establishing the temperature at which catalyst damage occurs as required in section (e)(3.2.1)(A), on 2005 and subsequent model year vehicles manufacturers may not define catalyst damage at a temperature more severe than what the catalyst system could be operated at for ten consecutive hours and still meet the applicable FTP full useful life standards.

(3.2.2) Misfire causing emissions to exceed 1.5 times the FTP standards:

(A) Manufacturers shall determine the percentage of misfire evaluated in 1000 revolution increments that would cause emissions from an emission durability demonstration vehicle to exceed 1.5 times any of the applicable FTP standards if the percentage of misfire were present from the beginning of the test. To establish this percentage of misfire, the manufacturer shall utilize misfire events occurring at equally spaced, complete engine cycle intervals, across randomly selected cylinders throughout each 1000-revolution increment. If this percentage of misfire is determined to be lower than one percent, the manufacturer may set the malfunction criteria at one percent.

(B) Subject to Executive Officer approval, a manufacturer may employ other revolution increments if the manufacturer can adequately demonstrate that the strategy would be equally effective and timely in detecting misfire.

(C) A malfunction shall be detected if the percentage of misfire established in section (3.2.2)(A) is exceeded regardless of the pattern of misfire events (e.g., random, equally spaced, continuous, etc.).

(3.3) Monitoring Conditions:

(3.3.1) Manufacturers shall continuously monitor for misfire under the following conditions:

(A) From no later than the end of the second crankshaft revolution after engine start,

(B) During the rise time and settling time for engine speed to reach the desired idle engine speed at engine start-up (i.e., “flare-up” and “flare-down”), and

(C) Under all positive torque engine speeds and load conditions except within the following range: the engine operating region bound by the positive torque line (i.e., engine load with the transmission in neutral), and the two following engine operating points: an engine speed of 3000 rpm with the engine load at the positive torque line, and the redline engine speed (defined in section (c)) with the engine's manifold vacuum at four inches of mercury lower than that at the positive torque line.

(3.3.2) If a monitoring system cannot detect all misfire patterns under all required engine speed and load conditions as required in section (e)(3.3.1) above, the manufacturer may request Executive Officer approval to accept the monitoring system. In evaluating the manufacturer’s request, the Executive Officer shall consider the following factors: the magnitude of the region(s) in which misfire detection is limited, the degree to which misfire detection is limited in the region(s) (i.e., the probability of detection of misfire events), the...
frequency with which said region(s) are expected to be encountered in-use, the type of misfire patterns for which misfire detection is troublesome, and demonstration that the monitoring technology employed is not inherently incapable of detecting misfire under required conditions (i.e., compliance can be achieved on other engines). The evaluation shall be based on the following misfire patterns: equally spaced misfire occurring on randomly selected cylinders, single cylinder continuous misfire, and paired cylinder (cylinders firing at the same crank angle) continuous misfire.

(3.3.3) A manufacturer may request Executive Officer approval of a monitoring system that has reduced misfire detection capability during the portion of the first 1000 revolutions after engine start that a cold start emission reduction strategy that reduces engine torque (e.g., spark retard strategies) is active. The Executive Officer shall approve the request if the manufacturer demonstrates that the probability of detection is greater than or equal to 75 percent during the worst case condition (i.e., lowest generated torque) for a vehicle operated continuously at idle (park/neutral idle) on a cold start between 50-86 degrees Fahrenheit and that the technology cannot reliably detect a higher percentage of the misfire events during the conditions.

(3.3.4) A manufacturer may request Executive Officer approval to disable misfire monitoring or employ an alternate malfunction criterion when misfire cannot be distinguished from other effects.

(A) Upon the manufacturer presenting documentation that demonstrates the disablement interval or period of use of an alternate malfunction criterion is limited only to that necessary for avoiding false detection, the Executive Officer shall approve the disablement or use of the alternate malfunction criterion for conditions involving:

(i) rough road,
(ii) fuel cut,
(iii) gear changes for manual transmission vehicles,
(iv) traction control or other vehicle stability control activation such as anti-lock braking or other engine torque modifications to enhance vehicle stability,
(v) off-board control or intrusive activation of vehicle components or diagnostics during service or assembly plant testing,
(vi) portions of intrusive evaporative system or EGR diagnostics that can significantly affect engine stability (i.e., while the purge valve is open during the vacuum pull-down of a evaporative system leak check but not while the purge valve is closed and the evaporative system is sealed or while an EGR diagnostic causes the EGR valve to be intrusively cycled on and off during positive torque conditions), or
(vii) engine speed, load, or torque transients due to throttle movements more rapid than occurs over the US06 cycle for the worst case vehicle within each test group.

(B) Additionally, the Executive Officer will approve a manufacturer's request in accordance with sections (e)(18.3) through (18.5) to disable misfire monitoring when fuel level is 15 percent or less of the nominal capacity of the
fuel tank, when PTO units are active, or while engine coolant temperature is below 20 degrees Fahrenheit. The Executive Officer will approve a request to continue disablement on engine starts when engine coolant temperature is below 20 degrees Fahrenheit at engine start until engine coolant temperature exceeds 70 degrees Fahrenheit.

(C) In general, for 2005 and subsequent model year vehicles, the Executive Officer shall not approve disablement for conditions involving normal air conditioning compressor cycling from on-to-off or off-to-on, automatic transmission gear shifts (except for shifts occurring during wide open throttle operation), transitions from idle to off-idle, normal engine speed or load changes that occur during the engine speed rise time and settling time (i.e., “flare-up” and “flare-down”) immediately after engine starting without any vehicle operator-induced actions (e.g., throttle stabs), or excess acceleration (except for acceleration rates that exceed the maximum acceleration rate obtainable at wide open throttle while the vehicle is in gear due to abnormal conditions such as slipping of a clutch).

(D) The Executive Officer may approve misfire monitoring disablement or use of an alternate malfunction criterion for any other condition on a case by case basis if the manufacturer can demonstrate that the request is based on an unusual or unforeseen circumstance and that it is applying the best available computer and monitoring technology.

(3.3.5) For engines with more than eight cylinders that cannot meet the requirements of section (e)(3.3.1), a manufacturer may request Executive Officer approval to use alternative misfire monitoring conditions. The Executive Officer shall approve the request upon the manufacturer submitting data and/or an engineering evaluation which adequately demonstrates that misfire detection throughout the required operating region cannot be achieved when employing proven monitoring technology (i.e., a technology that provides for compliance with these requirements on other engines) and provided misfire is detected to the fullest extent permitted by the technology. However, the Executive Officer may not grant the request if the misfire detection system is unable to monitor during all positive torque operating conditions encountered during an FTP cycle.

(3.4) MIL Illumination and Fault Code Storage:

(3.4.1) Misfire causing catalyst damage. Upon detection of the level of misfire specified in section (e)(3.2.1) above, the following criteria shall apply for MIL illumination and fault code storage:

(A) Pending fault codes

(i) A pending fault code and freeze frame conditions shall be stored immediately if, during a single driving cycle, the specified misfire level is exceeded three times when operating in the positive torque region encountered during an FTP cycle or is exceeded on a single occasion when operating at any other engine speed and load condition in the positive torque region defined in section (e)(3.3.1).
(ii) Immediately after a pending fault code is stored as specified in section (e)(3.4.1)(A)(i) above, the MIL shall blink once per second at all times while misfire is occurring during the driving cycle.
 a. The MIL may be extinguished during those times when misfire is not occurring during the driving cycle.
 b. If, at the time a misfire malfunction occurs, the MIL is already illuminated for a malfunction other than misfire, the MIL shall blink as previously specified in section (e)(3.4.1)(A)(ii) while misfire is occurring. If misfiring ceases, the MIL shall stop blinking but remain illuminated as required by the other malfunction.

(B) Confirmed fault codes
 a. If a pending fault code for exceeding the misfire level set forth in section (e)(3.2.1) is stored, the OBD II system shall immediately store a confirmed fault code if the percentage of misfire specified in section (e)(3.2.1) is again exceeded one or more times during either: (a) the driving cycle immediately following the storage of the pending fault code, regardless of the conditions encountered during the driving cycle; or (b) on the next driving cycle in which similar conditions (see section (c)) to the engine conditions that occurred when the pending fault code was stored are encountered.
 (ii) If a pending fault code for exceeding the misfire level set forth in section (e)(3.2.2) is stored from a previous drive cycle, the OBD II system shall immediately store a confirmed fault code if the percentage of misfire specified in section (e)(3.2.1) is exceeded one or more times regardless of the conditions encountered.
 (iii) Upon storage of a confirmed fault code, the MIL shall blink as specified in subparagraph (e)(3.4.1)(A)(ii) above as long as misfiring is occurring and the MIL shall remain continuously illuminated, even if the misfiring ceases.

(C) Erasure of pending fault codes
 Pending fault codes and stored freeze frame conditions shall be erased at the end of the next driving cycle in which similar conditions to the engine conditions that occurred when the pending fault code was stored have been encountered without any exceedance of the specified misfire levels. The pending code and stored freeze frame conditions may also be erased if similar driving conditions are not encountered during the next 80 driving cycles subsequent to the initial detection of a malfunction.

(D) Exemptions for vehicles with fuel shutoff and default fuel control.
 Notwithstanding sections (e)(3.4.1)(A) and (B) above, in vehicles that provide for fuel shutoff and default fuel control to prevent over fueling during catalyst damage misfire conditions, the MIL need not blink. Instead, the MIL may illuminate continuously in accordance with the requirements for continuous MIL illumination in sections (e)(3.4.1)(B)(iii) above upon detection of misfire, provided that the fuel shutoff and default control are activated as soon as misfire is detected. Fuel shutoff and default fuel control may be deactivated only to permit fueling outside of the misfire range. Manufacturers may also
periodically, but not more than once every 30 seconds, deactivate fuel shutoff and default fuel control to determine if the specified catalyst damage misfire level is still being exceeded. Normal fueling and fuel control may be resumed if the specified catalyst damage misfire level is no longer being exceeded.

(E) Manufacturers may request Executive Officer approval of strategies that steadily illuminate the MIL in lieu of blinking the MIL during extreme catalyst damage misfire conditions (i.e., catalyst damage misfire occurring at all engine speeds and loads). Executive Officer approval shall be granted if the manufacturer employs the strategy only when catalyst damage misfire levels cannot be avoided during reasonable driving conditions and the manufacturer demonstrates that the strategy will encourage operation of the vehicle in conditions that will minimize catalyst damage (e.g., at low engine speeds and loads).

(3.4.2) Misfire causing emissions to exceed 1.5 times the FTP standards. Upon detection of the misfire level specified in section (e)(3.2.2), the following criteria shall apply for MIL illumination and fault code storage:

(A) Misfire within the first 1000 revolutions after engine start.
 (i) A pending fault code and freeze frame conditions shall be stored no later than after the first exceedance of the specified misfire level during a single driving cycle if the exceedance occurs within the first 1000 revolutions after engine start (defined in section (c)) during which misfire detection is active.
 (ii) If a pending fault code is stored, the OBD II system shall illuminate the MIL and store a confirmed fault code within ten seconds if an exceedance of the specified misfire level is again detected in the first 1000 revolutions during any subsequent driving cycle, regardless of the conditions encountered during the driving cycle.
 (iii) The pending fault code and stored freeze frame conditions shall be erased at the end of the next driving cycle in which similar conditions to the engine conditions that occurred when the pending fault code was stored have been encountered without an exceedance of the specified percentage of misfire. The pending code and stored freeze frame conditions may also be erased if similar conditions are not encountered during the next 80 driving cycles immediately following the initial detection of the malfunction.

(B) Exceedances after the first 1000 revolutions after engine start.
 (i) A pending fault code and freeze frame conditions shall be stored no later than after the fourth exceedance of the percentage of misfire specified in section (e)(3.2.2) during a single driving cycle.
 (ii) If a pending fault code is stored, the OBD II system shall illuminate the MIL and store a confirmed fault code within ten seconds if the percentage of misfire specified in section (e)(3.2.2) is again exceeded four times during: (a) the driving cycle immediately following the storage of the pending fault code, regardless of the conditions encountered during the driving cycle; or (b) on the next driving cycle in which similar conditions...
(see section (c)) to the engine conditions that occurred when the pending fault code was stored are encountered.

(iii) The pending fault code and stored freeze frame conditions may be erased at the end of the next driving cycle in which similar conditions to the engine conditions that occurred when the pending fault code was stored have been encountered without an exceedance of the specified percentage of misfire. The pending code and stored freeze frame conditions may also be erased if similar conditions are not encountered during the next 80 driving cycles immediately following initial detection of the malfunction.

(3.4.3) If freeze frame conditions are stored for a malfunction other than misfire or fuel system malfunction (see section (e)(6)) when a pending fault code is stored as specified in section (e)(3.4) above, the stored freeze frame information shall be replaced with freeze frame information regarding the misfire malfunction.

(3.4.4) Storage of misfire conditions for similar conditions determination. Upon detection of misfire under sections (e)(3.4.1) or (3.4.2), manufacturers shall store the following engine conditions: engine speed, load, and warm-up status of the first misfire event that resulted in the storage of the pending fault code.

(3.4.5) Extinguishing the MIL. The MIL may be extinguished after three sequential driving cycles in which similar conditions have been encountered without an exceedance of the specified percentage of misfire.

(3.5) MISFIRE MONITORING FOR DIESELS

(3.5.1) Requirement:

(A) The OBD II system on a diesel engine shall be capable of detecting misfire occurring continuously in one or more cylinders. To the extent possible without adding hardware for this specific purpose, the OBD II system shall also identify the specific continuously misfiring cylinder.

(B) If more than one cylinder is continuously misfiring, a separate fault code shall be stored indicating that multiple cylinders are misfiring. When identifying multiple cylinder misfire, the manufacturer is not required to also identify each of the continuously misfiring cylinders individually through separate fault codes.

(3.5.2) Malfunction Criteria: The OBD II system shall detect a misfire malfunction when one or more cylinders are continuously misfiring.

(3.5.3) Monitoring Conditions: The OBD II system shall monitor for misfire during engine idle conditions. A manufacturer shall submit monitoring conditions to the Executive Officer for approval. The Executive Officer shall approve manufacturer defined monitoring conditions that are determined (based on manufacturer submitted data and/or other engineering documentation) to be: (i) technically necessary to ensure robust detection of malfunctions (e.g., avoid false passes and false detection of malfunctions), (ii) require no more than 1000 cumulative engine revolutions, and (iii) do not require any single continuous idle operation of more than 15 seconds to make a determination
that a malfunction is present (e.g., a decision can be made with data gathered during several idle operations of 15 seconds or less). For 2004 model year vehicles only, a manufacturer may comply with the monitoring conditions for diesel misfire monitoring in title 13, CCR section 1968.1 in lieu of meeting the monitoring conditions in section (e)(3.5.3).

(3.5.4) MIL Illumination and Fault Code Storage: General requirements for MIL illumination and fault code storage are set forth in section (d)(2).

(4) EVAPORATIVE SYSTEM MONITORING

(4.1) Requirement: The OBD II system shall verify purge flow from the evaporative system and shall monitor the complete evaporative system, excluding the tubing and connections between the purge valve and the intake manifold, for vapor leaks to the atmosphere. Individual components of the evaporative system (e.g. valves, sensors, etc.) shall be monitored in accordance with the comprehensive components requirements in section (e)(16) (e.g., for circuit continuity, out of range values, rationality, proper functional response, etc.).

(4.2) Malfunction Criteria:

(4.2.1) For purposes of section (e)(4), an orifice shall be defined as an O'Keefe Controls Co. precision metal “Type B” orifice with NPT connections with a diameter of the specified dimension (e.g., part number B-20-SS for a stainless steel 0.020 inch diameter orifice).

(4.2.2) The OBD II system shall detect an evaporative system malfunction when any of the following conditions exist:

(A) No purge flow from the evaporative system to the engine can be detected by the OBD II system;

(B) The complete evaporative system contains a leak or leaks that cumulatively are greater than or equal to a leak caused by a 0.040 inch diameter orifice; and

(C) The complete evaporative system contains a leak or leaks that cumulatively are greater than or equal to a leak caused by a 0.020 inch diameter orifice.

(4.2.3) On vehicles with fuel tank capacity greater than 25.0 gallons, a manufacturer may request the Executive Officer to revise the orifice size in sections (e)(4.2.2)(B) and/or (C) if the most reliable monitoring method available cannot reliably detect a system leak of the magnitudes specified. The Executive Officer shall approve the request upon finding that the manufacturer has provided adequate data and/or engineering analysis to support the request.

(4.2.4) Upon request by the manufacturer and submission of data and/or engineering evaluation which adequately support the request, the Executive Officer shall revise the orifice size in sections (e)(4.2.2)(B) and/or (C) upward to exclude detection of leaks that cannot cause evaporative or running loss emissions to exceed 1.5 times the applicable standards.

(4.2.5) A manufacturer may request Executive Officer approval to revise the orifice size in section (e)(4.2.2)(B) to a 0.090 inch diameter orifice. The Executive Officer shall approve the request upon the manufacturer submitting data and/or engineering analysis and the Executive Officer finding that:
(A) the monitoring strategy for detecting orifices specified in section (e)(4.2.2)(C) meets the monitoring conditions requirements of section (e)(4.3.2); and

(B) the monitoring strategy for detecting 0.090 inch diameter orifices substantially exceeds the monitoring conditions requirements of section (e)(4.3.1) for monitoring strategies designed to detect orifices specified in section (e)(4.2.2)(B).

(4.2.6) For the 2004 and 2005 model years only, manufacturers that use separate monitors to identify leaks (as specified in (e)(4.2.2)(B) or (C)) in different portions of the complete evaporative system (e.g., separate monitors for the fuel tank to canister portion and for the canister to purge valve portion of the system) may request Executive Officer approval to revise the malfunction criteria in sections (e)(4.2.2)(B) and (C) to identify a malfunction when the separately monitored portion of the evaporative system (e.g., the fuel tank to canister portion) has a leak (or leaks) that is greater than or equal to the specified size in lieu of when the complete evaporative system has a leak (or leaks) that is greater than or equal to the specified size. The Executive Officer shall approve the request upon finding that the manufacturer utilized the same monitoring strategy (e.g., monitoring portions of the complete system with separate monitors) on vehicles prior to the 2004 model year and that the monitoring strategy provides further isolation of the malfunction for repair technicians by utilizing separate fault codes for each monitored portion of the evaporative system.

(4.3) Monitoring Conditions:

(4.3.1) Manufacturers shall define the monitoring conditions for malfunctions identified in sections (e)(4.2.2)(A) and (B) (i.e., purge flow and 0.040 inch leak detection) in accordance with sections (d)(3.1) and (d)(3.2) (i.e., minimum ratio requirements).

(4.3.2) Manufacturers shall define the monitoring conditions for malfunctions identified in section (e)(4.2.2)(C) (i.e., 0.020 inch leak detection) in accordance with sections (d)(3.1) and (d)(3.2) (i.e., minimum ratio requirements). For purposes of tracking and reporting as required in section (d)(3.2.2), all monitors used to detect malfunctions identified in section (e)(4.2.2)(C) shall be tracked separately but reported as a single set of values as specified in section (d)(5.2.2).

(4.3.3) Manufacturers may disable or abort an evaporative system monitor when the fuel tank level is over 85 percent of nominal tank capacity or during a refueling event.

(4.3.4) Manufacturers may request Executive Officer approval to execute the evaporative system monitor only on driving cycles determined by the manufacturer to be cold starts if the condition is needed to ensure reliable monitoring. The Executive Officer may not approve criteria that exclude engine starts from being considered as cold starts solely on the basis that ambient temperature exceeds (i.e., indicates a higher temperature than) engine coolant temperature at engine start. The Executive Officer shall approve the request upon finding that data and/or an engineering evaluation
submitted by the manufacturer adequately demonstrate that a reliable check can only be made on driving cycles when the cold start criteria are satisfied. (4.3.5) Manufacturers may temporarily disable the evaporative purge system to perform an evaporative system leak check.

(4.4) MIL Illumination and Fault Code Storage:

(4.4.1) Except as provided below for fuel cap leaks and alternate statistical MIL illumination protocols, general requirements for MIL illumination and fault code storage are set forth in section (d)(2).

(4.4.2) If the OBD II system is capable of discerning that a system leak is being caused by a missing or improperly secured fuel cap:

(A) The manufacturer is not required to illuminate the MIL or store a fault code if the vehicle is equipped with an alternative indicator for notifying the vehicle operator of the malfunction. The alternative indicator shall conform to the requirements outlined in section (d)(2.1.1) for location and illumination.

(B) If the vehicle is not equipped with an alternative indicator and the MIL illuminates, the MIL may be extinguished and the corresponding fault codes erased once the OBD II system has verified that the fuel cap has been securely fastened and the MIL has not been illuminated for any other type of malfunction.

(C) The Executive Officer may approve other strategies that provide equivalent assurance that a vehicle operator will be promptly notified of a missing or improperly secured fuel cap and that corrective action will be undertaken.

(4.4.3) Notwithstanding section (d)(2.2.3), manufacturers may request Executive Officer approval to use alternative statistical MIL illumination and fault code storage protocols that require up to twelve driving cycles on average for monitoring strategies designed to detect malfunctions specified by section (e)(4.2.2)(C). Executive Officer approval shall be granted in accordance with the bases identified in section (d)(2.2.3) and if the manufacturer submits data and/or an engineering analysis adequately demonstrating that the most reliable monitoring method available cannot reliably detect a malfunction of the specified size without the additional driving cycles and that the monitoring system will still meet the monitoring conditions requirements specified in sections (d)(3.1) and (3.2).

(5) SECONDARY AIR SYSTEM MONITORING

(5.1) Requirement: The OBD II system on vehicles equipped with any form of secondary air delivery system shall monitor the proper functioning of the secondary air delivery system including all air switching valve(s). The individual electronic components (e.g., actuators, valves, sensors, etc.) in the secondary air system shall be monitored in accordance with the comprehensive component requirements in section (e)(16).

(5.2) Malfunction Criteria:

(5.2.1) For purposes of section (e)(5), “air flow” is defined as the air flow delivered by the secondary air system to the exhaust system. For vehicles using secondary air systems with multiple air flow paths/distribution points, the air flow to each bank (i.e., a group of cylinders that share a common exhaust
manifold, catalyst, and control sensor) shall be monitored in accordance with the malfunction criteria in sections (e)(5.2.3) and (5.2.4).

(5.2.2) For all Low Emission Vehicle I applications:
(A) Except as provided in sections (e)(5.2.2)(B) and (e)(5.2.4), the OBD II system shall detect a secondary air system malfunction prior to a decrease from the manufacturer's specified air flow that would cause a vehicle's emissions to exceed 1.5 times any of the applicable FTP standards.
(B) Manufacturers may request Executive Officer approval to detect a malfunction when no detectable amount of air flow is delivered in lieu of the malfunction criteria in section (e)(5.2.2)(A). The Executive Office shall grant approval upon determining that deterioration of the secondary air system is unlikely based on data and/or engineering evaluation submitted by the manufacturer demonstrating that the materials used for the secondary air system (e.g., air hoses, tubing, valves, connectors, etc.) are inherently resistant to disconnection, corrosion, or other deterioration.

(5.2.3) For all Low Emission Vehicle II applications:
(A) For 2004 and 2005 model year vehicles, manufacturers shall use the malfunction criteria specified for Low Emission Vehicle I applications in section (e)(5.2.2).
(B) For 2006 and subsequent model year vehicles, except as provided in sections (e)(5.2.3)(C) and (e)(5.2.4), the OBD II system shall detect a secondary air system malfunction prior to a decrease from the manufacturer's specified air flow during normal operation that would cause a vehicle's emissions to exceed 1.5 times any of the applicable FTP standards. For purposes of sections (e)(5.2) and (5.3), “normal operation” shall be defined as the condition when the secondary air system is activated during catalyst and/or engine warm-up following engine start and may not include the condition when the secondary air system is intrusively turned on solely for the purpose of monitoring.
(C) For 2006 and 2007 model year vehicles only, a manufacturer may request Executive Officer approval to detect a malfunction when no detectable amount of air flow is delivered during normal operation in lieu of the malfunction criteria in section (e)(5.2.3)(B) (e.g., 1.5 times the standard) during normal operation. Executive Officer approval shall be granted if the manufacturer submits data and/or engineering analysis adequately demonstrating that the monitoring system is capable of detecting malfunctions prior to a decrease from the manufacturer's specified air flow that would cause a vehicle's emissions to exceed 1.5 times any of the applicable FTP standards during an intrusive operation of the secondary air system later in the same driving cycle.

(5.2.4) For vehicles in which no deterioration or failure of the secondary air system would result in a vehicle’s emissions exceeding 1.5 times any of the applicable standards, the OBD II system shall detect a malfunction when no detectable amount of air flow is delivered. For vehicles subject to the malfunction criteria in section (e)(5.2.3)(B), this monitoring for no detectable
amount of air flow shall occur during normal operation of the secondary air system.

(5.3) Monitoring Conditions:
(5.3.1) For all Low Emission Vehicle I applications: Manufacturers shall define the monitoring conditions in accordance with section (d)(3.1).
(5.3.2) For all Low Emission Vehicle II applications:
(A) For 2004 and 2005 model year vehicles, manufacturers shall define the monitoring conditions in accordance with section (d)(3.1).
(B) For 2006 and subsequent model year vehicles, manufacturers shall define the monitoring conditions in accordance with sections (d)(3.1) and (d)(3.2) (i.e., minimum ratio requirements). For purposes of tracking and reporting as required in section (d)(3.2.2), all monitors used to detect malfunctions identified in section (e)(5.2) during normal operation of the secondary air system shall be tracked separately but reported as a single set of values as specified in sections (d)(4.2.2)(C) and (d)(5.2.2).

(5.4) MIL Illumination and Fault Code Storage: General requirements for MIL illumination and fault code storage are set forth in section (d)(2).

(6) FUEL SYSTEM MONITORING
(6.1) Requirement:
(6.1.1) For all vehicles except vehicles with diesel engines, the OBD II system shall monitor the fuel delivery system to determine its ability to provide compliance with emission standards.
(6.1.2) For vehicles with diesel engines, the manufacturer shall monitor the performance of all electronic fuel system components to the extent feasible with respect to the malfunction criteria specified in section (e)(6.2) below.

(6.2) Malfunction Criteria:
(6.2.1) The OBD II system shall detect a malfunction of the fuel delivery system (including feedback control based on a secondary oxygen sensor) when the fuel delivery system is unable to maintain a vehicle's emissions at or below 1.5 times any of the applicable FTP standards.
(6.2.2) Except as provided for in section (e)(6.2.3) below, if the vehicle is equipped with adaptive feedback control, the OBD II system shall detect a malfunction when the adaptive feedback control has used up all of the adjustment allowed by the manufacturer.
(6.2.3) If the vehicle is equipped with feedback control that is based on a secondary oxygen (or equivalent) sensor, the OBD II system is not required to detect a malfunction of the fuel system solely when the feedback control based on a secondary oxygen sensor has used up all of the adjustment allowed by the manufacturer. However, if a failure or deterioration results in vehicle emissions that exceed the malfunction criteria in section (e)(6.2.1), the OBD II system is required to detect a malfunction.
(6.2.4) The OBD II system shall detect a malfunction whenever the fuel control system fails to enter closed-loop operation (if employed) within a manufacturer specified time interval.
(6.2.5) Manufacturers may adjust the criteria and/or limit(s) to compensate for changes in altitude, for temporary introduction of large amounts of purge vapor, or for other similar identifiable operating conditions when they occur.

(6.3) Monitoring Conditions: The fuel system shall be monitored continuously for the presence of a malfunction.

(6.4) MIL Illumination and Fault Code Storage:

(6.4.1) A pending fault code and freeze frame conditions shall be stored immediately upon the fuel system exceeding the malfunction criteria established pursuant to section (e)(6.2).

(6.4.2) Except as provided below, if a pending fault code is stored, the OBD II system shall immediately illuminate the MIL and store a confirmed fault code if a malfunction is again detected during either of the following two events: (a) the driving cycle immediately following the storage of the pending fault code, regardless of the conditions encountered during the driving cycle; or (b) on the next driving cycle in which similar conditions (see section (c)) to those that occurred when the pending fault code was stored are encountered.

(6.4.3) The pending fault code and stored freeze frame conditions may be erased at the end of the next driving cycle in which similar conditions have been encountered without an exceedance of the specified fuel system malfunction criteria. The pending code and stored freeze frame conditions may also be erased if similar conditions are not encountered during the 80 driving cycles immediately after the initial detection of a malfunction for which the pending code was set.

(6.4.4) If freeze frame conditions are stored for a malfunction other than misfire (see section (e)(3)) or fuel system malfunction when a pending fault code is stored as specified in section (e)(6.4.1) above, the stored freeze frame information shall be replaced with freeze frame information regarding the fuel system malfunction.

(6.4.5) Storage of fuel system conditions for determining similar conditions of operation. Upon detection of a fuel system malfunction under section (e)(6.2), manufacturers shall store the engine speed, load, and warm-up status of the first fuel system malfunction that resulted in the storage of the pending fault code.

(6.4.6) Extinguishing the MIL. The MIL may be extinguished after three sequential driving cycles in which similar conditions have been encountered without a malfunction of the fuel system.

(7) OXYGEN SENSOR MONITORING

(7.1) Requirement:

(7.1.1) The OBD II system shall monitor the output voltage, response rate, and any other parameter which can affect emissions of all primary (fuel control) oxygen (lambda) sensors for malfunction. Both the lean-to-rich and rich-to-lean response rates shall be monitored.

(7.1.2) The OBD II system shall also monitor all secondary oxygen sensors (those used for fuel trim control or as a monitoring device) for proper output voltage, activity, and/or response rate.
(7.1.3) For vehicles equipped with heated oxygen sensors, the OBD II system shall monitor the heater for proper performance.

(7.1.4) For other types of sensors (e.g., wide range or universal lambda sensors, etc.), the manufacturer shall submit a monitoring plan to the Executive Officer for approval. The Executive Officer shall approve the request upon finding that the manufacturer has submitted data and an engineering evaluation that demonstrate that the monitoring plan is as reliable and effective as the monitoring plan required for conventional sensors under section (e)(7).

(7.2) Malfunction Criteria:

(7.2.1) Primary Sensors:
(A) The OBD II system shall detect a malfunction prior to any failure or deterioration of the oxygen sensor voltage, response rate, amplitude, or other characteristic(s) (including drift or bias corrected for by secondary sensors) that would cause a vehicle's emissions to exceed 1.5 times any of the applicable FTP standards.
(B) The OBD II system shall detect malfunctions of the oxygen sensor caused by a lack of circuit continuity or out of range values.
(C) The OBD II system shall detect a malfunction of the oxygen sensor when a sensor failure or deterioration causes the fuel system to stop using that sensor as a feedback input (e.g., causes default or open loop operation).
(D) The OBD II system shall detect a malfunction of the oxygen sensor when the sensor output voltage, amplitude, activity, or other characteristics are no longer sufficient for use as an OBD II system monitoring device (e.g., for catalyst monitoring).

(7.2.2) Secondary Sensors:
(A) The OBD II system shall detect a malfunction prior to any failure or deterioration of the oxygen sensor voltage, response rate, amplitude, or other characteristic(s) that would cause a vehicle's emissions to exceed 1.5 times any of the applicable FTP standards.
(B) The OBD II system shall detect malfunctions of the oxygen sensor caused by a lack of circuit continuity.
(C) The OBD II system shall detect a malfunction of the oxygen sensor when the sensor output voltage, amplitude, activity, or other characteristics are no longer sufficient for use as an OBD II system monitoring device (e.g., for catalyst monitoring).
(D) The OBD II system shall detect malfunctions of the oxygen sensor caused by out of range values.

(7.2.3) Sensor Heaters:
(A) The OBD II system shall detect a malfunction of the heater performance when the current or voltage drop in the heater circuit is no longer within the manufacturer's specified limits for normal operation (i.e., within the criteria required to be met by the component vendor for heater circuit performance at high mileage). Subject to Executive Officer approval, other malfunction criteria for heater performance malfunctions may be used provided the manufacturer submits data and/or an engineering evaluation adequately
showing monitoring reliability and timeliness to be equivalent to the stated criteria in section (e)(7.2.3)(A).

(B) The OBD II system shall detect malfunctions of the heater circuit including open or short circuits that conflict with the commanded state of the heater (e.g., shorted to 12 Volts when commanded to 0 Volts (ground), etc.).

(7.3) Monitoring Conditions:

(7.3.1) Primary Sensors
(A) Manufacturers shall define the monitoring conditions for malfunctions identified in sections (e)(7.2.1)(A) and (D) (e.g., proper response rate) in accordance with sections (d)(3.1) and (d)(3.2) (i.e., minimum ratio requirements). For purposes of tracking and reporting as required in section (d)(5.2.2), all monitors used to detect malfunctions identified in sections (e)(7.2.1)(A) and (D) shall be tracked separately but reported as a single set of values as specified in section (d)(5.2.2).

(B) Except as provided in section (e)(7.3.1)(C), monitoring for malfunctions identified in sections (e)(7.2.1)(B) and (C) (i.e., circuit continuity, out-of-range, and open-loop malfunctions) shall be:
(i) Conducted in accordance with title 13, CCR section 1968.1 for Low Emission Vehicle I applications and 2004 and 2005 model year Low Emission Vehicle II applications;
(ii) Conducted continuously for all 2006 and subsequent model year Low Emission Vehicle II applications.

(C) A manufacturer may request Executive Officer approval to disable continuous oxygen sensor monitoring when an oxygen sensor malfunction cannot be distinguished from other effects (e.g., disable out-of-range low monitoring during fuel cut conditions). The Executive Officer shall approve the disablement upon the manufacturer submitting test data and/or documentation that demonstrates a properly functioning sensor cannot be distinguished from a malfunctioning sensor and that the disablement interval is limited only to that necessary for avoiding false detection.

(7.3.2) Secondary Sensors
(A) Manufacturers shall define monitoring conditions for malfunctions identified in sections (e)(7.2.2)(A), (B), and (C) (e.g., proper sensor activity) in accordance with sections (d)(3.1) and (d)(3.2) (i.e., minimum ratio requirements).

(B) Except as provided in section (e)(7.3.2)(C), monitoring for malfunctions identified in section (e)(7.2.2)(D) (i.e., out-of-range malfunctions) shall be:
(i) Conducted in accordance with title 13, CCR section 1968.1 for Low Emission Vehicle I applications and 2004 and 2005 model year Low Emission Vehicle II applications;
(ii) Conducted continuously for all 2006 and subsequent model year Low Emission Vehicle II applications.

(C) A manufacturer may request Executive Officer approval to disable continuous oxygen sensor monitoring when an oxygen sensor malfunction cannot be distinguished from other effects (e.g., disable out-of-range low monitoring during fuel cut conditions). The Executive Officer shall approve
the disablement upon the manufacturer submitting test data and/or
documentation that demonstrates a properly functioning sensor cannot be
distinguished from a malfunctioning sensor and that the disablement interval
is limited only to that necessary for avoiding false detection.

(7.3.3) Sensor Heaters
(A) Manufacturers shall define monitoring conditions for malfunctions identified
in section (e) (8.2.3)(A) (e.g., sensor heater performance) in accordance
sections (d)(3.1) and (d)(3.2) (i.e., minimum ratio requirements).
(B) Monitoring for malfunctions identified in section (e)(7.2.3)(B) (e.g., circuit
malfunctions) shall be:
(i) Conducted in accordance with title 13, CCR section 1968.1 for 2004 and
2005 model year vehicles;
(ii) Conducted continuously for all 2006 and subsequent model year vehicles.

(7.4) MIL Illumination and Fault Code Storage: General requirements for MIL
illumination and fault code storage are set forth in section (d)(2).

(8) EXHAUST GAS RECIRCULATION (EGR) SYSTEM MONITORING
(8.1) Requirement: The OBD II system shall monitor the EGR system on vehicles
so-equipped for low and high flow rate malfunctions. The individual electronic
components (e.g., actuators, valves, sensors, etc.) that are used in the EGR
system shall be monitored in accordance with the comprehensive component
requirements in section (e)(16).

(8.2) Malfunction Criteria:
(8.2.1) The OBD II system shall detect a malfunction of the EGR system prior to an
increase or decrease from the manufacturer’s specified EGR flow rate that
would cause a vehicle’s emissions to exceed 1.5 times any of the applicable
FTP standards.
(8.2.2) For vehicles in which no failure or deterioration of the EGR system could
result in a vehicle’s emissions exceeding 1.5 times any of the applicable
standards, the OBD II system shall detect a malfunction when the system has
no detectable amount of EGR flow.

(8.3) Monitoring Conditions:
(8.3.1) Manufacturers shall define the monitoring conditions for malfunctions
identified in section (e)(8.2) (e.g., flow rate) in accordance with sections
(d)(3.1) and (d)(3.2) (i.e., minimum ratio requirements). For purposes of
tracking and reporting as required in section (d)(3.2.2), all monitors used to
detect malfunctions identified in section (e)(8.2.2) shall be tracked separately
but reported as a single set of values as specified in section (d)(5.2.2).
(8.3.2) Manufacturers may request Executive Officer approval to temporarily disable
the EGR system check under specific conditions (e.g., when freezing may
affect performance of the system). The Executive Officer shall approve the
request provided the manufacturer submits data and/or an engineering
evaluation which adequately demonstrate that a reliable check cannot be
made when these conditions exist.

(8.4) MIL Illumination and Fault Code Storage: General requirements for MIL
illumination and fault code storage are set forth in section (d)(2).
(9) POSITIVE CRANKCASE VENTILATION (PCV) SYSTEM MONITORING

(9.1) Requirement:

(9.1.1) On all 2004 and subsequent model year vehicles, manufacturers shall monitor the PCV system on vehicles so-equipped for system integrity. A manufacturer may use an alternate phase-in schedule in lieu of meeting the requirements of section (e)(9) on all 2004 model year vehicles if the alternate phase-in schedule provides for equivalent compliance volume (as defined in section (c)) to the phase-in schedule specified in title 13, CCR section 1968.1(b)(10.1). Vehicles not required to be equipped with PCV systems shall be exempt from monitoring of the PCV system.

(9.1.2) For vehicles with diesel engines, the manufacturer shall submit a plan for Executive Officer approval of the monitoring strategy, malfunction criteria, and monitoring conditions prior to introduction on a production vehicle. Executive Officer approval shall be based on the effectiveness of the monitoring strategy to monitor the performance of the PCV system to the extent feasible with respect to the malfunction criteria in section (e)(9.2) below and the monitoring conditions required by the diagnostic.

(9.2) Malfunction Criteria:

(9.2.1) For the purposes of section (e)(9), “PCV system” is defined as any form of crankcase ventilation system, regardless of whether it utilizes positive pressure. “PCV valve” is defined as any form of valve or orifice used to restrict or control crankcase vapor flow. Further, any additional external PCV system tubing or hoses used to equalize crankcase pressure or to provide a ventilation path between various areas of the engine (e.g., crankcase and valve cover) are considered part of the PCV system “between the crankcase and the PCV valve” and subject to the malfunction criteria in section (e)(9.2.2) below.

(9.2.2) Except as provided below, the OBD II system shall detect a malfunction of the PCV system when a disconnection of the system occurs between either the crankcase and the PCV valve, or between the PCV valve and the intake manifold.

(9.2.3) If the PCV system is designed such that the PCV valve is fastened directly to the crankcase in a manner which makes it significantly more difficult to remove the valve from the crankcase rather than disconnect the line between the valve and the intake manifold (taking aging effects into consideration), the Executive Officer shall exempt the manufacturer from detection of disconnection between the crankcase and the PCV valve.

(9.2.4) Subject to Executive Officer approval, system designs that utilize tubing between the valve and the crankcase shall also be exempted from the portion of the monitoring requirement for detection of disconnection between the crankcase and the PCV valve. The manufacturer shall file a request and submit data and/or engineering evaluation in support of the request. The Executive Officer shall approve the request upon finding that the connections between the valve and the crankcase are: (i) resistant to deterioration or accidental disconnection, (ii) significantly more difficult to disconnect than the
line between the valve and the intake manifold, and (iii) not subject to
disconnection per manufacturer’s repair procedures for non-PCV system
repair work.

9.2.5) Manufacturers are not required to detect disconnections between the PCV
valve and the intake manifold if said disconnection (1) causes the vehicle to
stall immediately during idle operation; or (2) is unlikely to occur due to a
PCV system design that is integral to the induction system (e.g., machined
passages rather than tubing or hoses).

(9.3) Monitoring Conditions: Manufacturers shall define the monitoring conditions for
malfunctions identified in section (e)(9.2) in accordance with sections (d)(3.1)
and (d)(3.2) (i.e., minimum ratio requirements).

(9.4) MIL Illumination and Fault Code Storage: General requirements for MIL
illumination and fault code storage are set forth in section (d)(2). The stored fault
code need not specifically identify the PCV system (e.g., a fault code for idle
speed control or fuel system monitoring can be stored) if the manufacturer
demonstrates that additional monitoring hardware would be necessary to make
this identification, and provided the manufacturer’s diagnostic and repair
procedures for the detected malfunction include directions to check the integrity
of the PCV system.

(10) ENGINE COOLING SYSTEM MONITORING

(10.1) Requirement:

(10.1.1) The OBD II system shall monitor the thermostat on vehicles so-equipped for
proper operation.

(10.1.2) The OBD II system shall monitor the engine coolant temperature (ECT)
sensor for circuit continuity, out-of-range values, and rationality faults.

(10.2) Malfunction Criteria:

(10.2.1) Thermostat

(A) The OBD II system shall detect a thermostat malfunction if, within an
Executive Officer approved time interval after starting the engine, either of
the following two conditions occur:

(i) The coolant temperature does not reach the highest temperature required
by the OBD II system to enable other diagnostics;

(ii) The coolant temperature does not reach a warmed-up temperature within
20 degrees Fahrenheit of the manufacturer’s nominal thermostat
regulating temperature. Subject to Executive Officer approval, a
manufacturer may utilize lower temperatures for this criterion if it can
adequately demonstrate that the fuel, spark timing, and/or other coolant
temperature-based modifications to the engine control strategies would
not cause an emission increase of 50 or more percent of any of the
applicable standards (e.g., 50 degree Fahrenheit emission test, etc.).

(B) Executive Officer approval of the time interval after engine start shall be
granted based on data and/or engineering evaluation submitted by the
manufacturer to support specified times.

(C) With Executive Officer approval, a manufacturer may use alternate
malfunction criteria and/or monitoring conditions (see section (e)(10.3)) that
are a function of temperature at engine start on vehicles that do not reach the
temperatures specified in the malfunction criteria when the thermostat is
functioning properly. Executive Officer approval shall be based on the
manufacturer submitting data that demonstrates that a properly operating
system does not reach the specified temperatures, that the monitor is
capable of meeting the specified malfunction criteria at engine start
temperatures greater than 50°F, and that the overall effectiveness of the
monitor is comparable to a monitor meeting these thermostat monitoring
requirements at lower temperatures.

(D) With Executive Officer approval, manufacturers may omit this monitor.
Executive Officer approval shall be granted if the manufacturer adequately
demonstrates that a malfunctioning thermostat cannot cause a measurable
increase in emissions during any reasonable driving condition nor cause any
disablement of other monitors.

(10.2.2) ECT Sensor
(A) Circuit Continuity. The OBD II system shall detect a malfunction when a lack
of circuit continuity or out-of-range values occur.

(B) Time to Reach Closed-Loop Enable Temperature.
(i) The OBD II system shall detect a malfunction if the ECT sensor does not
achieve the stabilized minimum temperature which is needed for the fuel
control system to begin closed-loop operation (closed-loop enable
temperature) within an Executive Officer approved time interval after
starting the engine. For diesel applications, the minimum temperature
needed for warmed-up fuel control to begin shall be used instead of the
closed-loop enable temperature.

(ii) The time interval shall be a function of starting ECT and/or a function of
intake air temperature and, except as provided below in section
(e)(10.2.2)(B)(iii), may not exceed:
 a. two minutes for engine start temperatures at or above 50 degrees
 Fahrenheit and five minutes for engine start temperatures at or above
 20 degrees Fahrenheit and below 50 degrees Fahrenheit for Low
 Emission Vehicle I applications and 2004 and 2005 model year Low
 Emission Vehicle II applications;
 b. two minutes for engine start temperatures up to 15 degrees Fahrenheit
 below the closed-loop enable temperature and five minutes for engine
 start temperatures between 15 and 35 degrees Fahrenheit below the
 closed-loop enable temperature for all 2006 and subsequent model
 year Low Emission Vehicle II applications.

(iii) Executive Officer approval of the time interval shall be based on data
and/or engineering evaluation submitted by the manufacturer to support
specified times. The Executive Officer shall allow longer time intervals
provided a manufacturer submits data and/or an engineering evaluation
which adequately demonstrate that the vehicle requires a longer time to
warm up under normal conditions.
(iv) The Executive Officer shall exempt manufacturers from the requirement of section (e)(10.2.2)(B) if the manufacturer does not utilize ECT to enable closed loop fuel control.

(C) Stuck in Range Below the Highest Minimum Enable Temperature. The OBD II system shall detect a malfunction if the ECT sensor indicates a fixed temperature below the highest minimum enable temperature required by the OBD II system to enable other diagnostics (e.g., an OBD II system that requires ECT to be greater than 140 degrees Fahrenheit to enable a diagnostic must detect malfunctions that cause the ECT sensor to indicate a fixed temperature below 140 degrees Fahrenheit). Manufacturers are exempted from this requirement for temperature regions in which the monitors required under sections (e)(10.2.1) or (e)(10.2.2)(B) will detect ECT sensor malfunctions as defined in section (e)(10.2.2)(C).

(D) Stuck in Range Above the Lowest Maximum Enable Temperature.

(i) The OBD II system shall detect a malfunction if the ECT sensor indicates a fixed temperature above the lowest maximum enable temperature required by the OBD II system to enable other diagnostics (e.g., an OBD II system that requires ECT to be less than 90 degrees Fahrenheit at engine start to enable a diagnostic must detect malfunctions that cause the ECT sensor to indicate a fixed temperature above 90 degrees Fahrenheit).

(ii) Manufacturers are exempted from this requirement for temperature regions in which the monitors required under sections (e)(10.2.1), (e)(10.2.2)(B), (e)(10.2.2)(C) (i.e., ECT sensor or thermostat malfunctions) will detect ECT sensor malfunctions as defined in section (e)(10.2.2)(D) or in which the MIL will be illuminated under the requirements of section (d)(2.1.3) for default mode operation (e.g., overtemperature protection strategies).

(iii) For Low Emission Vehicle I applications and 2004 and 2005 model year Low Emission Vehicle II applications only, manufacturers are also exempted from the requirements of section (e)(10.2.2)(D) for vehicles that have a temperature gauge (not a warning light) on the instrument panel and utilize the same ECT sensor for input to the OBD II system and the temperature gauge.

(iv) For 2006 and subsequent model year Low Emission Vehicle II applications, manufacturers are also exempted from the requirements of section (e)(10.2.2)(D) for temperature regions where the temperature gauge indicates a temperature in the red zone (engine overheating zone) for vehicles that have a temperature gauge (not a warning light) on the instrument panel and utilize the same ECT sensor for input to the OBD II system and the temperature gauge.

(10.3) Monitoring Conditions:

(10.3.1) Thermostat

(A) Manufacturers shall define the monitoring conditions for malfunctions identified in section (e)(10.2.1)(A) in accordance with section (d)(3.1). Additionally, except as provided for in sections (e)(10.3.1)(B) and (C),
monitoring for malfunctions identified in section (e)(10.2.1)(A) shall be conducted once per driving cycle on every driving cycle in which the ECT sensor indicates, at engine start, a temperature lower than the temperature established as the malfunction criteria in section (e)(10.2.1)(A).

(B) Manufacturers may disable thermostat monitoring at ambient starting temperatures below 20 degrees Fahrenheit.

(C) Manufacturers may request Executive Officer approval to suspend or disable thermostat monitoring if the vehicle is subjected to conditions which could lead to false diagnosis (e.g., vehicle operation at idle for more than 50 percent of the warm-up time, hot restart conditions, etc.). In general, the Executive Officer shall not approve disablement of the monitor on engine starts where the ECT at engine start is more than 35 degrees Fahrenheit lower than the thermostat malfunction threshold temperature determined under section (e)(10.2.1)(A). The Executive Officer shall approve the request upon finding that the manufacturer has provided adequate data and/or engineering analysis to support the request.

(10.3.2) ECT Sensor

(A) Monitoring for malfunctions identified in section (e)(10.2.2)(A) (i.e., circuit continuity and out of range) shall be conducted continuously.

(B) Manufacturers shall define the monitoring conditions for malfunctions identified in section (e)(10.2.2)(B) in accordance with section (d)(3.1). Additionally, except as provided for in section (e)(10.3.2)(D), monitoring for malfunctions identified in section (e)(10.2.2)(B) shall be conducted once per driving cycle on every driving cycle in which the ECT sensor indicates a temperature lower than the closed loop enable temperature at engine start (i.e., all engine start temperatures greater than the ECT sensor out of range low temperature and less than the closed loop enable temperature).

(C) Manufacturers shall define the monitoring conditions for malfunctions identified in sections (e)(10.2.2)(C) and (D) in accordance with sections (d)(3.1) and (d)(3.2) (i.e., minimum ratio requirements).

(D) Manufacturers may suspend or delay the time to reach closed loop enable temperature diagnostic if the vehicle is subjected to conditions which could lead to false diagnosis (e.g., vehicle operation at idle for more than 50 to 75 percent of the warm-up time).

(10.4) MIL Illumination and Fault Code Storage: General requirements for MIL illumination and fault code storage are set forth in section (d)(2).

(11) COLD START EMISSION REDUCTION STRATEGY MONITORING

(11.1) Requirement: If a vehicle incorporates a specific engine control strategy to reduce cold start emissions, the OBD II system shall monitor the key control or feedback parameters (e.g., engine speed, mass air flow, ignition timing, etc.), other than secondary air, while the control strategy is active to ensure proper operation of the control strategy. Secondary air systems shall be monitored under the provisions of section (e)(5). The requirements of section (e)(11) shall be phased in as follows: 30 percent of all 2006 model year vehicles, 60 percent
of all 2007 model year vehicles, and 100 percent of all 2008 and subsequent model year vehicles.

(11.2) Malfunction Criteria:

(11.2.1) The OBD II system shall detect a malfunction prior to any failure or deterioration of the individual components associated with the cold start emission reduction control strategy that would cause a vehicle's emissions to exceed 1.5 times the applicable FTP standards. Manufacturers shall:

(A) Establish the malfunction criteria based on data from one or more representative vehicle(s).

(B) Provide an engineering evaluation for establishing the malfunction criteria for the remainder of the manufacturer's product line. The Executive Officer shall waive the evaluation requirement each year if, in the judgement of the Executive Officer, technological changes do not affect the previously determined malfunction criteria.

(11.2.2) For components where no failure or deterioration the component used for the cold start emission reduction strategy could result in a vehicle's emissions exceeding 1.5 times the applicable standards, the individual component shall be monitored for proper functional response in accordance with the malfunction criteria in section (e)(16.2) while the control strategy is active.

(11.3) Monitoring Conditions: Manufacturers shall define the monitoring conditions for malfunctions identified in section (e)(11.2) in accordance with sections (d)(3.1) and (d)(3.2) (i.e., minimum ratio requirements).

(11.4) MIL Illumination and Fault Code Storage: General requirements for MIL illumination and fault code storage are set forth in section (d)(2).

(12) AIR CONDITIONING (A/C) SYSTEM COMPONENT MONITORING

(12.1) Requirement: If a vehicle incorporates an engine control strategy that alters off-idle fuel and/or spark control when the A/C system is on, the OBD II system shall monitor all electronic air conditioning system components for malfunctions that cause the system to fail to invoke the alternate control while the A/C system is on or cause the system to invoke the alternate control while the A/C system is off. The requirements of section (e)(12) shall be phased in as follows: 30 percent of all 2006 model year vehicles, 60 percent of all 2007 model year vehicles, and 100 percent of all 2008 and subsequent model year vehicles.

(12.2) Malfunction Criteria:

(12.2.1) The OBD II system shall detect a malfunction prior to any failure or deterioration of a component of the air conditioning system that would cause a vehicle's emissions to exceed 1.5 times any of the appropriate applicable emission standards or would effectively disable any other monitored system or component covered by this regulation. For malfunctions that result in the alternate control being erroneously invoked while the A/C system is off, the appropriate emission standards shall be the FTP standards. For malfunctions that result in the alternate control failing to be invoked while the A/C system is on, the appropriate emission standards shall be the SC03 emission standards.
(12.2.2) If no single component failure or deterioration causes emissions to exceed 1.5 times any of the appropriate applicable emission standards as defined above in section (e)(12.2.1) nor effectively disables any other monitored system or component, manufacturers are not required to monitor any air conditioning system component for purposes of section (e)(12).

(12.3) Monitoring Conditions: Manufacturers shall define the monitoring conditions for malfunctions identified in section (e)(12.2) in accordance with sections (d)(3.1) and (d)(3.2) (i.e., minimum ratio requirements).

(12.4) MIL Illumination and Fault Code Storage: General requirements for MIL illumination and fault code storage are set forth in section (d)(2).

(13) VARIABLE VALVE TIMING AND/OR CONTROL (VVT) SYSTEM MONITORING

(13.1) Requirement: On all 2005 and subsequent model year Low Emission Vehicle II applications, the OBD II system shall monitor the VVT system on vehicles so-equipped for target error and slow response malfunctions. The individual electronic components (e.g., actuators, valves, sensors, etc.) that are used in the VVT system shall be monitored in accordance with the comprehensive components requirements in section (e)(16). VVT systems on Low Emission Vehicle I applications and 2004 model year Low Emission Vehicle II applications shall be monitored in accordance with the comprehensive components requirements in section (e)(16).

(13.2) Malfunction Criteria:

(13.2.1) Target Error. The OBD II system shall detect a malfunction prior to any failure or deterioration in the capability of the VVT system to achieve the commanded valve timing and/or control within a crank angle and/or lift tolerance that would cause a vehicle's emissions to exceed 1.5 times any of the applicable FTP standards.

(13.2.2) Slow Response. The OBD II system shall detect a malfunction prior to any failure or deterioration in the capability of the VVT system to achieve the commanded valve timing and/or control within a time that would cause a vehicle’s emissions to exceed 1.5 times any of the applicable FTP standards.

(13.2.3) For vehicles in which no failure or deterioration of the VVT system could result in a vehicle’s emissions exceeding 1.5 times any of the applicable standards, the VVT system shall be monitored for proper functional response in accordance with the malfunction criteria in section (e)(16.2).

(13.3) Monitoring Conditions: Manufacturers shall define the monitoring conditions for VVT system malfunctions identified in section (e)(13.2) in accordance with sections (d)(3.1) and (d)(3.2) (i.e., minimum ratio requirements), with the exception that monitoring shall occur every time the monitoring conditions are met during the driving cycle in lieu of once per driving cycle as required in section (d)(3.1.2). Additionally, manufacturers shall track and report VVT system monitor performance under section (d)(3.2.2). For purposes of tracking and reporting as required in section (d)(3.2.2), all monitors used to detect malfunctions identified in section (e)(13.2) shall be tracked separately but reported as a single set of values as specified in section (d)(5.2.2).
(13.4) MIL Illumination and Fault Code Storage: General requirements for MIL illumination and fault code storage are set forth in section (d)(2).

(14) DIRECT OZONE REDUCTION (DOR) SYSTEM MONITORING

(14.1) Requirement:

(14.1.1) The OBD II system shall monitor the DOR system on vehicles so-equipped for malfunctions that reduce the ozone reduction performance of the system.

(14.1.2) For 2003, 2004, and 2005 model year vehicles subject to the malfunction criteria of section (e)(14.2.1) below, manufacturers may request to be exempted from DOR system monitoring. The Executive Officer shall approve the exemption upon the manufacturer:

(A) Agreeing that the DOR system receive only 50 percent of the NMOG credit assigned to the DOR system as calculated under Air Resources Board (ARB) Manufacturers Advisory Correspondence (MAC) No. 99-06, December 20, 1999, which is hereby incorporated by reference herein.

(B) Identifying the DOR system component(s) as an emission control device on both the underhood emission control label and a separate label as specified below. The DOR system shall be included in the list of emission control devices on the underhood emission control label and be identified as a “DOR system” or other equivalent term from SAE J1930 "Electrical/Electronic Systems Diagnostic Terms, Definitions, Abbreviations, and Acronyms", incorporated by reference. A separate label shall be located on or near the DOR system component(s) in a location that is visible to repair technicians prior to the removal of any parts necessary to replace the DOR system component(s) and shall identify the components as a “DOR system” or other equivalent SAE J1930 term.

(14.2) Malfunction Criteria:

(14.2.1) For vehicles in which the NMOG credit assigned to the DOR system, as calculated in accordance with ARB MAC No. 99-06, is less than or equal to 50 percent of the applicable FTP NMOG standard, the OBD II system shall detect a malfunction when the DOR system has no detectable amount of ozone reduction.

(14.2.2) For vehicles in which the NMOG credit assigned to the DOR system, as calculated in accordance with ARB MAC No. 99-06, is greater than 50 percent of the applicable FTP NMOG standard, the OBD II system shall detect a malfunction when the ozone reduction performance of the DOR system deteriorates to a point where the difference between the NMOG credit assigned to the properly operating DOR system and the NMOG credit calculated for a DOR system performing at the level of the malfunctioning system exceeds 50 percent of the applicable FTP NMOG standard.

(14.2.3) For vehicles equipped with a DOR system, the manufacturer may modify any of the applicable NMOG malfunction criteria in sections (e)(1)-(3), (e)(5)-(8), (e)(11)-(e)(13), and (e)(17) by adding the NMOG credit received by the DOR system to the required NMOG malfunction criteria (e.g., a malfunction criteria of 1.5 x NMOG standard would be modified to (1.5 x NMOG standard) + DOR system NMOG credit).
(14.3) Monitoring Conditions: Manufacturers shall define the monitoring conditions for malfunctions identified in section (e)(14.2) in accordance with sections (d)(3.1) and (d)(3.2) (i.e., minimum ratio requirements).

(14.4) MIL Illumination and Fault Code Storage: General requirements for MIL illumination and fault code storage are set forth in section (d)(2).

(15) PARTICULATE MATTER (PM) TRAP MONITORING

(15.1) Requirement: On all 2004 and subsequent model year diesel passenger cars, light-duty trucks, and medium-duty passenger vehicles (see section (c)) and all 2005 and subsequent model year medium-duty vehicles, manufacturers shall monitor the PM trap on vehicles so-equipped for proper performance.

(15.2) Malfunction Criteria:

(15.2.1) For 2004 and subsequent model year diesel passenger cars, light-duty trucks, and medium-duty passenger vehicles, the OBD II system shall detect a malfunction prior to a decrease in the capability of the PM trap that would cause a vehicle’s emissions to exceed 1.5 times the applicable standards.

(15.2.2) For 2005 and 2006 model year diesel medium-duty vehicles (except medium-duty passenger vehicles), the OBD II system shall detect a malfunction of the PM trap when catastrophic failure occurs. The Executive Officer shall exempt vehicles from this PM trap monitoring requirement if the manufacturer can demonstrate with data and/or engineering evaluation that catastrophic failure of the PM trap will not cause emissions to exceed 1.5 times the applicable standards.

(15.2.3) For 2007 and subsequent model year diesel medium-duty vehicles, the OBD II system shall detect a malfunction prior to a decrease in the capability of the PM trap that would cause a vehicle’s emissions to exceed 1.5 times the applicable standards.

(15.2.4) For vehicles subject to the malfunction criteria in sections (e)(15.2.1) or (15.2.3) above, if no failure or deterioration of the PM trap could result in a vehicle’s emissions exceeding 1.5 times any of the applicable standards, the OBD II system shall detect a malfunction when catastrophic failure of the PM trap occurs.

(15.3) Monitoring Conditions: Manufacturers shall define the monitoring conditions for malfunctions identified in section (e)(15.2) in accordance with sections (d)(3.1) and (d)(3.2) (i.e., minimum ratio requirements).

(15.4) MIL Illumination and Fault Code Storage: General requirements for MIL illumination and fault code storage are set forth in section (d)(2).

(16) COMPREHENSIVE COMPONENT MONITORING

(16.1) Requirement:

(16.1.1) Except as provided in section (e)(16.1.3) and (e)(17), the OBD II system shall monitor for malfunction any electronic powertrain component/system not otherwise described in sections (e)(1) through (e)(15) that either provides input to (directly or indirectly) or receives commands from the on-board computer(s), and: (1) can affect emissions during any reasonable in-use
driving condition, or (2) is used as part of the diagnostic strategy for any other monitored system or component.

(A) Input Components: Input components required to be monitored may include the vehicle speed sensor, crank angle sensor, knock sensor, throttle position sensor, cam position sensor, fuel composition sensor (e.g., flexible fuel vehicles), transmission electronic components such as sensors, modules, and solenoids which provide signals to the powertrain control system.

(B) Output Components/Systems: Output components/systems required to be monitored may include the idle speed control system, automatic transmission solenoids or controls, variable length intake manifold runner systems, supercharger or turbocharger electronic components, heated fuel preparation systems, the wait-to-start lamp on diesel applications, and a warm-up catalyst bypass valve.

(16.1.2) For purposes of criteria (1) in section (e)(16.1.1) above, the manufacturer shall determine whether a powertrain input or output component/system can affect emissions. If the Executive Officer reasonably believes that a manufacturer has incorrectly determined that a component/system cannot affect emissions, the Executive Officer shall require the manufacturer to provide emission data showing that the component/system, when malfunctioning and installed in a suitable test vehicle, does not have an emission effect. Emission data may be requested for any reasonable driving condition.

(16.1.3) Manufacturers shall monitor for malfunction electronic powertrain input or output components/systems associated with an electronic transfer case only if the transfer case component or system is used as part of the diagnostic strategy for any other monitored system or component.

(16.2) Malfunction Criteria:

(16.2.1) Input Components:

(A) The OBD II system shall detect malfunctions of input components caused by a lack of circuit continuity, out of range values, and, where feasible, rationality faults. To the extent feasible, the rationality fault diagnostics shall verify that a sensor output is neither inappropriately high nor inappropriately low (e.g., “two-sided” diagnostics). Rationality faults shall be separately detected and store different fault codes than the respective lack of circuit continuity and out of range diagnostics. Additionally, input component lack of circuit continuity and out of range faults shall be separately detected and store different fault codes for each distinct malfunction (e.g., out-of-range low, out-of-range high, open circuit, etc.). Manufacturers are not required to store separate fault codes for lack of circuit continuity faults that cannot be distinguished from other out-of-range circuit faults.

(16.2.2) Output Components/Systems:

(A) The OBD II system shall detect a malfunction of an output component/system when proper functional response of the component and system to computer commands does not occur. If a functional check is not feasible, the OBD II system shall detect malfunctions of output components/systems caused by a lack of circuit continuity or circuit fault (e.g., short to ground or high voltage).
For output component lack of circuit continuity faults and circuit faults, manufacturers are not required to store different fault codes for each distinct malfunction (e.g., open circuit, shorted low, etc.). Manufacturers are not required to activate an output component/system when it would not normally be active exclusively for the purposes of performing functional monitoring of output components/systems as required in section (e)(16).

(B) The idle speed control system shall be monitored for proper functional response to computer commands. For strategies based on deviation from target idle speed, a malfunction shall be detected when either of the following conditions occur:

(i) The idle speed control system cannot achieve the target idle speed within 200 revolutions per minute (rpm) above the target speed or 100 rpm below the target speed. The Executive Officer shall allow larger engine speed tolerances provided a manufacturer submits data and/or an engineering evaluation which adequately demonstrate that the tolerances can be exceeded without a malfunction being present.

(ii) The idle speed control system cannot achieve the target idle speed within the smallest engine speed tolerance range required by the OBD II system to enable any other monitors.

(C) Glow plugs shall be monitored for proper functional response to computer commands. The glow plug circuit(s) shall be monitored for proper current and voltage drop. The Executive Officer shall approve other monitoring strategies based on manufacturer’s data and/or engineering analysis demonstrating equally reliable and timely detection of malfunctions. Manufacturers shall detect a malfunction when a single glow plug no longer operates within the manufacturer’s specified limits for normal operation. If a manufacturer demonstrates that a single glow plug failure cannot cause a measurable increase in emissions during any reasonable driving condition, the manufacturer shall detect a malfunction for the minimum number of glow plugs needed to cause an emission increase. Further, to the extent feasible on existing engine designs (without adding additional hardware for this purpose) and on all new design engines, the stored fault code shall identify the specific malfunctioning glow plug(s).

(16.3) Monitoring Conditions:

(16.3.1) Input Components:

(A) Input components shall be monitored continuously for proper range of values and circuit continuity.

(B) For rationality monitoring (where applicable):

(i) For 2004 model year vehicles, manufacturers shall define the monitoring conditions for detecting malfunctions in accordance with section (d)(3.1).

(ii) For 2005 and subsequent model year vehicles, manufacturers shall define the monitoring conditions for detecting malfunctions in accordance with sections (d)(3.1) and (d)(3.2) (i.e., minimum ratio requirements), with the exception that rationality monitoring shall occur every time the monitoring conditions are met during the driving cycle in lieu of once per driving cycle as required in section (d)(3.1.2).
(16.3.2) Output Components/Systems:
 (A) Monitoring for circuit continuity and circuit faults shall be conducted continuously.
 (B) Except as provided in section (e)(16.3.2)(C), for functional monitoring, manufacturers shall define the monitoring conditions for detecting malfunctions in accordance with sections (d)(3.1) and (d)(3.2) (i.e., minimum ratio requirements).
 (C) For the idle speed control system, manufacturers shall define the monitoring conditions for functional monitoring in accordance with sections (d)(3.1) and (d)(3.2) (i.e., minimum ratio requirements), with the exception that functional monitoring shall occur every time the monitoring conditions are met during the driving cycle in lieu of once per driving cycle as required in section (d)(3.1.2).

(16.4) MIL Illumination and Fault Code Storage:
 (16.4.1) Except as provided in section (e)(16.4.2) below, general requirements for MIL illumination and fault code storage are set forth in section (d)(2).
 (16.4.2) Exceptions to general requirements for MIL illumination. MIL illumination is not required in conjunction with storing a confirmed fault code if the component or system, when malfunctioning, could not cause vehicle emissions to increase by 15 percent or more of the FTP standard and is not used as part of the diagnostic strategy for any other monitored system or component.

(17) OTHER EMISSION CONTROL OR SOURCE SYSTEM MONITORING
 (17.1) Requirement: For other emission control or source systems that are: (1) not identified or addressed in sections (e)(1) through (e)(16) (e.g., hydrocarbon traps, NOx storage devices, fuel-fired passenger compartment heaters, etc.), or (2) identified or addressed in section (e)(16) but not corrected or compensated for by the adaptive fuel control system (e.g., swirl control valves), manufacturers shall submit a plan for Executive Officer approval of the monitoring strategy, malfunction criteria, and monitoring conditions prior to introduction on a production vehicle. Executive Officer approval shall be based on the effectiveness of the monitoring strategy, the malfunction criteria utilized, the monitoring conditions required by the diagnostic, and, if applicable, the determination that the requirements of section (e)(17.3) below are satisfied.
 (17.2) For purposes of section (e)(17), emission source systems are components or devices that emit pollutants subject to vehicle evaporative and exhaust emission standards (e.g., NMOG, CO, NOx, PM, etc.) and include non-electronic components and non-powertrain components (e.g., fuel-fired passenger compartment heaters, on-board reformers, etc.).
 (17.3) Except as provided below in this paragraph, for 2005 and subsequent model year vehicles that utilize emission control systems that alter intake air flow or cylinder charge characteristics by actuating valve(s), flap(s), etc. in the intake air delivery system (e.g., swirl control valve systems), the monitoring strategy shall, at a minimum, monitor the shaft to which all valves in one exhaust bank are physically attached for proper functional response. For non-metal shafts or
segmented shafts, the monitor shall verify all shaft segments for proper functional response (e.g., by verifying the segment or portion of the shaft furthest from the actuator properly functions). For systems that have more than one shaft to operate valves in multiple exhaust banks, manufacturers are not required to add more than one set of detection hardware (e.g., sensor, switch, etc.) per exhaust bank to meet this requirement. Vehicles utilizing these emission control systems designed and certified for 2004 or earlier model year vehicles and carried over to the 2005 or subsequent model year shall be not be required to meet the provisions of section (e)(17.3) until the vehicle, engine, or intake air delivery system are redesigned.

(18) EXCEPTIONS TO MONITORING REQUIREMENTS

(18.1) Except as provided in sections (e)(18.1.1) through (18.1.3) below, upon request of a manufacturer or upon the best engineering judgment of the ARB, the Executive Officer may revise the emission threshold for a malfunction on any check on a Low Emission Vehicle I application or Low Emission Vehicle II application if the most reliable monitoring method developed requires a higher threshold to prevent significant errors of commission in detecting a malfunction.

(18.1.1) For PC/LDT SULEV II vehicles, the Executive Officer shall approve a malfunction criteria of 2.5 times the applicable FTP standards in lieu of 1.5 wherever required in section (e).

(18.1.2) For 2004 model year PC/LDT SULEV II vehicles only, the Executive Officer shall approve monitors with thresholds that exceed 2.5 times the applicable FTP standard if the manufacturer demonstrates that a higher threshold is needed given the state of development of the vehicle and that the malfunction criteria and monitoring approach and technology (e.g., fuel system limits, percent misfire, monitored catalyst volume, etc.) are at least as stringent as comparable ULEV (not ULEV II) vehicles.

(18.1.3) For vehicles certified to Federal Bin 3 or Bin 4 emission standards, manufacturers shall utilize the ULEV II vehicle NMOG and CO malfunction criteria (e.g., 1.5 times the Bin 3 or Bin 4 NMOG and CO standards) and the PC/LDT SULEV II vehicle NOx malfunction criteria (e.g., 2.5 times the Bin 3 or Bin 4 NOx standards).

(18.2) Whenever the requirements in section (e) of this regulation require a manufacturer to meet a specific phase-in schedule (e.g., (e)(11) cold start emission reduction strategy monitoring requires 30 percent in 2006 model year, 60 percent in 2007 model year, and 100 percent in 2008 model year):

(18.2.1) The phase-in percentages shall be based on the manufacturer’s projected sales volume for all vehicles subject to the requirements of title 13, CCR section 1968.2 unless specifically stated otherwise in section (e).

(18.2.2) Manufacturers may use an alternate phase-in schedule in lieu of the required phase-in schedule if the alternate phase-in schedule provides for equivalent compliance volume as defined in section (c) except as specifically noted for the phase in of in-use monitor performance ratio monitoring conditions in section (d)(3.2).
(18.2.3) Small volume manufacturers are required to meet the requirement on all vehicles by the final year of the phase-in in lieu of meeting the specific phase-in requirements for each model year (e.g., in the example in section (e)(18.2), small volume manufacturers are required to meet 100% in the 2008 model year for cold start emission reduction strategy monitoring, but not 30% in the 2006 model year or 60% in the 2007 model year).

(18.3) Manufacturers may request Executive Officer approval to disable an OBD II system monitor at ambient engine starting temperatures below twenty degrees Fahrenheit (20°F) (low ambient temperature conditions may be determined based on intake air or engine coolant temperature at engine starting) or at elevations above 8000 feet above sea level. The Executive Officer shall approve the request upon the manufacturer providing data and/or an engineering evaluation that demonstrates that monitoring during the conditions would be unreliable. A manufacturer may further request, and the Executive Officer shall approve, that an OBD II system monitor be disabled at other ambient engine starting temperatures upon the manufacturer demonstrating with data and/or an engineering evaluation that misdiagnosis would occur at the ambient temperatures because of its effect on the component itself (e.g., component freezing).

(18.4) Manufacturers may request Executive Officer approval to disable monitoring systems that can be affected by low fuel level or running out of fuel (e.g., misfire detection) when the fuel level is 15 percent or less of the nominal capacity of the fuel tank. The Executive Officer shall approve the request upon the manufacturer submitting data and/or an engineering evaluation that adequately demonstrates that monitoring at the fuel levels would be unreliable.

(18.5) Manufacturers may disable monitoring systems that can be affected by vehicle battery or system voltage levels when the battery or system voltage is below 11.0 Volts. Manufacturers may request Executive Officer approval to utilize a voltage threshold higher than 11.0 Volts to disable system monitoring. The Executive Officer shall approve the request if the manufacturer submits data and/or an engineering evaluation that adequately demonstrates that monitoring at the voltages would be unreliable, that operation of a vehicle below the disablement criteria for extended periods of time is unlikely, and that the OBD II system monitors the battery or system voltage.

(18.6) A manufacturer may disable affected monitoring systems in vehicles designed to accommodate the installation of Power Take-Off (PTO) units (as defined in section (c)), provided disablement occurs only while the PTO unit is active, and the OBD II readiness status is cleared by the on-board computer (i.e., all monitors set to indicate “not complete”) while the PTO unit is activated (See section (f)(4.1) below). If the disablement occurs, the readiness status may be restored to its state prior to PTO activation when the disablement ends.

(18.7) For 2004 model year vehicles certified to run on alternate fuels, manufacturers may request the Executive Officer to waive specific monitoring requirements in section (e) for which monitoring may not be reliable with respect to the use of alternate fuels. The Executive Officer shall grant the request provided the manufacturer adequately demonstrates that the use of the alternate fuel could
cause false illumination of the MIL even when using the best available monitoring technologies.

(f) STANDARDIZATION REQUIREMENTS

(1) Reference Documents:

The following Society of Automotive Engineers (SAE) and International Organization of Standards (ISO) documents are incorporated by reference into this regulation:

(2) Diagnostic Connector:

A standard data link connector conforming to SAE J1962 specifications (except as specified in section (f)(2.3)) shall be incorporated in each vehicle.

(2.1) The connector shall be located in the driver’s side foot-well region of the vehicle interior in the area bound by the driver’s side of the vehicle and the driver’s side edge of the center console (or the vehicle centerline if the vehicle does not have a center console) and at a location no higher than the bottom of the steering wheel when in the lowest adjustable position. The connector may not be located on or in the center console (i.e., neither on the horizontal faces near the floor-mounted gear selector, parking brake lever, or cup-holders nor on the vertical faces near the car stereo, climate system, or navigation system controls). The location of the connector shall be capable of being easily identified by a “crouched” technician entering the vehicle from the driver’s side.

(2.2) If the connector is covered, the cover must be removable by hand without the use of any tools and be labeled to aid technicians in identifying the location of the connector. Access to the diagnostic connector may not require opening or the removal of any storage accessory (e.g., ashtray, coinbox, etc.). The label shall
be submitted to the Executive Officer for review and approval, at or before the
time the manufacturer submits its certification application. The Executive Officer
shall approve the label if it clearly identifies that the connector is located behind
the cover and is consistent with language and/or symbols commonly used in the
automotive industry.

(2.3) Any pins in the connector that provide electrical power shall be properly fused to
protect the integrity and usefulness of the connector for diagnostic purposes and
may not exceed 18.0 Volts DC regardless of the nominal vehicle system or
battery voltage (e.g., 12V, 24V, 42V, etc.).

(2.4) For 2004 model year vehicles only, a manufacturer may comply with the
diagnostic connector requirements in title 13, CCR section 1968.1 in lieu of
meeting the requirements of section (f)(2).

(3) Communications to a Scan Tool:
Manufacturers shall use one of the following standardized protocols for
communication of all required emission related messages from on-board to off-
board network communications to a scan tool meeting SAE J1978 specifications:

(3.1) SAE J1850. All required emission related messages using this protocol shall
use the Cyclic Redundancy Check and the three byte header, may not use
inter-byte separation or checksums, and may not require a minimum delay of
100 ms between SAE J1978 scan tool requests. This protocol may not be used
on any 2008 or subsequent model year vehicle.

(3.2) ISO 9141-2. This protocol may not be used on any 2007 or subsequent model
year vehicle.

(3.3) ISO 14230-4. This protocol may not be used on any 2008 or subsequent model
year vehicle.

(3.4) ISO 15765-4. This protocol shall be allowed on any 2003 and subsequent
model year vehicle and required on all 2008 and subsequent model year
vehicles. All required emission-related messages using this protocol shall use a
500 kbps baud rate.

(4) Required Emission Related Functions:
The following standardized functions shall be implemented in accordance with the
specifications in SAE J1979 to allow for access to the required information by a
scan tool meeting SAE J1978 specifications:

(4.1) Readiness Status: In accordance with SAE J1979 specifications, the OBD II
system shall indicate “complete” or “not complete” for each of the installed
monitored components and systems identified in section (e)(1) through (e)(8)
since the fault memory was last cleared. All components or systems that are
monitored continuously shall always indicate “complete”. Those components or
systems that are not subject to continuous monitoring shall immediately indicate
“complete” upon the respective diagnostic(s) being fully executed and
determining that the component or system is not malfunctioning. A component
or system shall also indicate “complete” if after the requisite number of decisions
necessary for determining MIL status have been fully executed, the monitor
indicates a malfunction for the component or system. The status for each of the
monitored components or systems shall indicate “not complete” whenever fault memory has been cleared or erased by a means other than that allowed in section (d)(2). Normal vehicle shut down (i.e., key off, engine off) may not cause the status to indicate “not complete”.

(4.1.1) Subject to Executive Officer approval, if monitoring is disabled for a multiple number of driving cycles due to the continued presence of extreme operating conditions (e.g., cold ambient temperatures, high altitudes, etc), readiness status for the subject monitoring system may be set to indicate “complete” without monitoring having been completed. Executive Officer approval shall be based on the conditions for monitoring system disablement and the number of driving cycles specified without completion of monitoring before readiness is indicated as “complete”.

(4.1.2) For the evaporative system monitor, the readiness status shall be set in accordance with section (f)(4.1) when both the functional check of the purge valve and the 0.020 inch leak detection monitor indicate that they are complete. For vehicles with both 0.040 inch and 0.020 inch leak detection monitors, the readiness status may be set when both the functional check of the purge valve and the 0.040 inch leak detection monitor indicate that they are complete.

(4.1.3) If the manufacturer elects to additionally indicate readiness status through the MIL in the key on, engine off position as provided for in section (d)(2.5), the readiness status shall be indicated in the following manner: If the readiness status for all monitored components or systems is “complete”, the MIL shall remain continuously illuminated in the key on, engine off position for at least 15-20 seconds. If the readiness status for one or more of the monitored components or systems is “not complete”, after 15-20 seconds of operation in the key on, engine off position with the MIL illuminated continuously, the MIL shall blink once per second for 5-10 seconds. The data stream value for MIL status (section (f)(4.2)) shall indicate “commanded off” during this sequence unless the MIL has also been “commanded on” for a detected fault.

(4.2) Data Stream: The following signals shall be made available on demand through the standardized data link connector in accordance with SAE J1979 specifications. The actual signal value shall always be used instead of a default or limp home value.

(4.2.1) For all vehicles: calculated load value, number of stored confirmed fault codes, engine coolant temperature, engine speed, absolute throttle position (if equipped with a throttle), vehicle speed, and MIL status (i.e., commanded-on or commanded-off).

(4.2.2) For all vehicles so equipped: fuel control system status (e.g., open loop, closed loop, etc.), fuel trim, fuel pressure, ignition timing advance, intake air temperature, manifold air pressure, air flow rate from mass air flow sensor, secondary air status (upstream, downstream, or atmosphere), oxygen sensor output, air/fuel ratio sensor output.

(4.2.3) For all 2005 and subsequent model year vehicles using the ISO 15765-4 protocol for the standardized functions required in section (f), the following
signals shall also be made available: absolute load, fuel level (if used to enable or disable any other diagnostics), relative throttle position (if equipped with a throttle), barometric pressure (directly measured or estimated), engine control module system voltage, commanded equivalence ratio, catalyst temperature (if directly measured or estimated for purposes of enabling the catalyst monitor(s)), monitor status (i.e., disabled for the rest of this driving cycle, complete this driving cycle, or not complete this driving cycle) since last engine shut-off for each monitor used for readiness status, time elapsed since engine start, distance traveled while MIL activated, distance traveled since fault memory last cleared, and number of warm-up cycles since fault memory last cleared.

(4.2.4) For all 2005 and subsequent model year vehicles so equipped and using the ISO 15765-4 protocol for the standardized functions required in section (f): ambient air temperature, evaporative system vapor pressure, commanded purge valve duty cycle/position, commanded EGR valve duty cycle/position, EGR error between actual and commanded, PTO status (active or not active), redundant absolute throttle position (for electronic throttle or other systems that utilize two or more sensors), absolute pedal position, redundant absolute pedal position, and commanded throttle motor position.

(4.3) Freeze Frame.

(4.3.1) “Freeze frame” information required to be stored pursuant to section (d)(2.2.1) shall be made available on demand through the standardized data link connector in accordance with SAE J1979 specifications.

(4.3.2) “Freeze frame” conditions must include the fault code which caused the data to be stored and all of the signals required in section (f)(4.2) except: number of stored confirmed fault codes, oxygen sensor output, air/fuel ratio sensor output, catalyst temperature, evaporative system vapor pressure, MIL status, monitor status since last engine shut off, distance traveled while MIL activated, distance traveled since fault memory last cleared, and number of warm-up cycles since fault memory last cleared.

(4.3.3) Only one frame of data is required to be recorded. Manufacturers may choose to store additional frames provided that at least the required frame can be read by a scan tool meeting SAE J1978 specifications.

(4.3.4) For 2004 model year vehicles only, a manufacturer may choose to store freeze frame conditions in accordance with title 13, CCR section 1968.1(f) in lieu of the requirements of sections (f)(4.3.1) through (f)(4.3.3) above.

(4.4) Fault Codes

(4.4.1) For all monitored components and systems, stored pending and confirmed fault codes shall be made available through the diagnostic connector in accordance with SAE J1979 specifications. Standardized fault codes conforming to SAE J2012 shall be employed.

(4.4.2) The stored fault code shall, to the fullest extent possible, pinpoint the likely cause of the malfunction. Manufacturers shall use separate fault codes for every diagnostic where the diagnostic and repair procedure or likely cause of the failure is different. In general, rationality and functional diagnostics shall use different fault codes than the respective circuit continuity
diagnostics. Additionally, input component circuit continuity diagnostics shall use different fault codes for distinct malfunctions (e.g., out-of-range low, out-of-range high, open circuit, etc.).

(4.4.3) Manufacturers shall use appropriate SAE-defined fault codes of J2012 (e.g., P0xxx, P2xxx) whenever possible. With Executive Officer approval, manufacturers may use manufacturer-defined fault codes in accordance with SAE J2012 specifications (e.g., P1xxx). Factors to be considered by the Executive Officer for approval shall include the lack of available SAE-defined fault codes, uniqueness of the diagnostic or monitored component, expected future usage of the diagnostic or component, and estimated usefulness in providing additional diagnostic and repair information to service technicians. Manufacturer-defined fault codes shall be used consistently (i.e., the same fault code may not be used to represent two different failure modes) across a manufacturer’s entire product line.

(4.4.4) A fault code (pending and/or confirmed, as required in sections (d) and (e)) shall be stored and available to an SAE J1978 scan tool within 10 seconds after a diagnostic has determined that a malfunction has occurred.

(4.4.5) Pending fault codes:
(A) On all 2005 and subsequent model year vehicles, pending fault codes for all components and systems (including continuously and non-continuously monitored components) shall be made available through the diagnostic connector in accordance with SAE J1979 specifications (e.g., Mode $07).
(B) On all 2005 and subsequent model year vehicles, a pending fault code(s) shall be stored and available through the diagnostic connector for all currently malfunctioning monitored component(s) or system(s), regardless of the MIL illumination status or confirmed fault code status (e.g., even after a pending fault has matured to a confirmed fault code and the MIL is illuminated, a pending fault code shall be stored and available if the most recent monitoring event indicates the component is malfunctioning).
(C) Manufacturers using alternate statistical protocols for MIL illumination as allowed in section (d)(2.2.3) shall submit to the Executive Officer a protocol for setting pending fault codes. The Executive Officer shall approve the proposed protocol upon finding that, overall, it is equivalent to the requirements in sections (f)(4.4.5)(A) and (B) and that it effectively provides service technicians with a quick and accurate indication of a pending failure.

(4.5) Test Results
(4.5.1) For all monitored components and systems identified in section (e)(1) through (e)(8) except misfire detection and fuel system monitoring, results of the most recent monitoring of the components and systems and the test limits established for monitoring the respective components and systems shall be stored and available through the data link in accordance with SAE J1979 specifications.
(4.5.2) The test results shall be reported such that properly functioning components and systems (e.g., “passing” systems) do not store test values outside of the established test limits.
(4.5.3) The test results shall be stored until updated by a more recent valid test result or the fault memory of the OBD II system computer is cleared. Upon fault memory being cleared, test results reported for monitors that have not yet completed since the last time the fault memory was cleared shall report values that do not indicate a failure (i.e., a test value which is outside of the test limits).

(4.5.4) Additionally, for vehicles using ISO 15765-4 (see section (f)(3.4)) as the communication protocol:
(A) The test results and limits shall be made available in the standardized format specified in ISO 15031-5 for the ISO 15765-4 protocol.
(B) Test limits shall include both minimum and maximum acceptable values and shall be reported for all monitored components and systems identified in sections (e)(1) through (e)(8), except fuel system monitoring. The test limits shall be defined so that a test result equal to either test limit is a “passing” value, not a “failing” value.
(C) For 2005 and subsequent model year vehicles, misfire monitoring test results shall be calculated and reported in the standardized format specified in ISO 15031-5.
(D) Monitors that have not yet completed since the last time the fault memory was cleared shall report values of zero for the test result and test limits.
(E) All test results and test limits shall always be reported and the test results shall be stored until updated by a more recent valid test result or the fault memory of the OBD II system computer is cleared.
(F) The OBD II system shall store and report unique test results for each separate diagnostic (e.g., an OBD II system with individual evaporative system diagnostics for 0.040 inch and 0.020 inch leaks shall separately report 0.040 inch and 0.020 inch test results).

(4.6) Software Calibration Identification: On all vehicles, a software calibration identification number (CAL ID) for the diagnostic or emission critical powertrain control unit(s) shall be made available through the standardized data link connector in accordance with the SAE J1979 specifications. A unique CAL ID shall be used for every emission-related calibration and/or software set having at least one bit of different data from any other emission-related calibration and/or software set. Control units coded with multiple emission or diagnostic calibrations and/or software sets shall indicate a unique CAL ID for each variant in a manner that enables an off-board device to determine which variant is being used by the vehicle.

(4.7) Software Calibration Verification Number

(4.7.1) All 2005\(^2\) and subsequent model year vehicles shall use an algorithm to calculate a calibration verification number (CVN) that verifies the on-board computer software integrity in diagnostic or emission critical electronically reprogrammable powertrain control units. The CVN shall be made available through the standardized data link connector in accordance with the SAE

\(^2\) The requirements of section (f)(4.7) shall supercede the requirements set forth in title 13, CCR section 1968.1(l)(4.0).
J1979 specifications. The CVN shall be capable of being used to determine if the emission-related software and/or calibration data are valid and applicable for that vehicle and CAL ID.

(4.7.2) Manufacturers shall request Executive Officer approval of the algorithm used to calculate the CVN. Executive Officer approval of the algorithm shall be based on the complexity of the algorithm and the difficulty in achieving the same CVN with modified calibration values.

(4.7.3) The CVN shall be calculated at least once per driving cycle and stored until the CVN is subsequently updated. Except for immediately after a reprogramming event or a non-volatile memory clear, the stored value shall be made available through the data link connector to a generic scan tool in accordance with SAE J1979 specifications. The stored CVN value may not be erased when fault memory is erased by a generic scan tool in accordance with SAE J1979 specifications or during normal vehicle shut down (i.e., key off, engine off).

(4.7.4) For purposes of Inspection and Maintenance (I/M) testing, manufacturers shall make the CVN and CAL ID combination information available in a standardized electronic format that allows for off-board verification that the CVN is valid and appropriate for a specific vehicle and CAL ID.

(4.8) Vehicle Identification Number: All 2005 and subsequent model year vehicles shall have the vehicle identification number (VIN) available in a standardized format through the standardized data link connector in accordance with SAE J1979 specifications. Only one electronic control unit per vehicle shall report the VIN to an SAE J1978 scan tool.

(5) In-use Performance Ratio Tracking Requirements

(5.1) For each monitor required in section (e) to separately report an in-use performance ratio, manufacturers shall implement software algorithms to report a numerator and denominator in the standardized format specified below and in accordance with the ISO 15031-5 specifications.

(5.2) Numerical Value Specifications:

(5.2.1) For the numerator, denominator, general denominator, and ignition cycle counter:

(A) Each number shall have a minimum value of zero and a maximum value of 65,535 with a resolution of one.

(B) Each number shall be reset to zero only when a non-volatile memory reset occurs (e.g., reprogramming event, etc.) and may not be reset to zero under any other circumstances including when a scan tool command to clear fault codes is received.

(C) If either the numerator or denominator for a specific component reaches the maximum value of 65,535 ±2, both numbers shall be divided by two before either is incremented again to avoid overflow problems.

(D) If the ignition cycle counter reaches the maximum value of 65,535 ±2, the ignition cycle counter shall rollover and increment to zero on the next ignition cycle to avoid overflow problems.

(E) If the general denominator reaches the maximum value of 65,535 ±2, the
general denominator shall rollover and increment to zero on the next driving cycle that meets the general denominator definition to avoid overflow problems.

(F) If a vehicle is not equipped with a component (e.g., oxygen sensor bank 2, secondary air system), the corresponding numerator and denominator for that specific component shall always be reported as zero.

(5.2.2) For the ratio:
(A) The ratio shall have a minimum value of zero and a maximum value of 7.99527 with a resolution of 0.000122.
(B) A ratio for a specific component shall be considered to be zero whenever the corresponding numerator is equal to zero and the corresponding denominator is not zero.
(C) A ratio for a specific component shall be considered to be the maximum value of 7.99527 if the corresponding denominator is zero or if the actual value of the numerator divided by the denominator exceeds the maximum value of 7.99527.

(6) Service Information:
(6.1) Motor vehicle manufacturers shall provide the aftermarket service and repair industry emission-related service information for all 1994 and subsequent model year vehicles equipped with OBD II systems as set forth in sections (f)(6.3) through (6.8). The requirements of section (f)(6) shall supersede the service information requirements set forth in title 13, CCR section 1968.1.

(6.2) The Executive Officer shall waive the requirements of sections (f)(6.3) through (6.8) if the ARB or U.S. EPA adopt a service information regulation or rule that is in effect and operative and requires motor vehicle manufacturers to provide emission-related service information:
(A) of comparable or greater scope than required under these provisions;
(B) in an easily accessible format and in a timeframe that is equivalent to or exceeds the timeframes set forth below; and
(C) at fair and reasonable cost.

(6.3) For all 1994 and subsequent model year vehicles equipped with an OBD II system, manufacturers shall make readily available, at a fair and reasonable price to the automotive repair industry, vehicle repair procedures which allow effective emission-related diagnosis and repairs to be performed using only the SAE J1978 generic scan tool and commonly available, non-microprocessor based tools.

(6.4) As an alternative to publishing repair procedures required under section (f)(6.3), a manufacturer may publish repair procedures referencing the use of manufacturer-specific or enhanced equipment provided the manufacturer makes available to the aftermarket scan tool industry the information needed to manufacture scan tools to perform the same emission-related diagnosis and repair procedures (excluding any reprogramming) in a comparable manner as the manufacturer-specific diagnostic scan tool.

(6.5) For all 1996 and subsequent model year vehicles, manufacturers shall make available:
(A) Information to utilize the test results reported as required in section (f)(4.5) (or title 13, CCR section 1968.1 (l)(3.0) for 1996 through 2002 model year vehicles). The information must include a description of the test and test result, associated fault codes with the test result, and scaling, units, and conversion factors necessary to convert the results to engineering units.

(B) A generic description of each of the diagnostics used to meet the requirements of this regulation. The generic description must include a text description of how the diagnostic is performed, typical enable conditions, typical malfunction thresholds, typical monitoring time, fault codes associated with the diagnostic, and test results (section (f)(4.5)) associated with the diagnostic. Vehicles that have diagnostics not adequately represented by the typical values identified above shall be specifically identified along with the appropriate typical values.

(C) Information necessary to execute each of the diagnostics used to meet the requirements of sections (e)(1) through (e)(8). The information must either include a description of sample driving patterns designed to be operated in-use or a written description of the conditions the vehicle needs to operate in to execute each of the diagnostics necessary to change the readiness status from not complete to complete for all monitors. The information shall be able to be used to exercise all necessary monitors in a single driving cycle as well as be able to be used to exercise the monitors to individually change the readiness status for each specific monitor from “not complete” to “complete”.

(7) Exceptions to Standardization Requirements.
For medium-duty vehicles equipped with engines certified on an engine dynamometer, a manufacturer may request Executive Officer approval to use an alternate diagnostic connector, communication protocol, and emission-related message structure and format in lieu of the standardization requirements in sections (f)(2) and (4) that refer to J1962, J1978, and J1979 as well as the identified protocols in section (f)(3). The Executive Officer shall approve the request upon determination that:

(A) The ARB has adopted an on-board diagnostic regulation for heavy-duty vehicles; and

(B) The alternate diagnostic connector, communication protocol, and emission-related message format and structure requested by the manufacturer meets the standardization requirements in the on-board diagnostic regulation for heavy-duty vehicles.

(g) MONITORING SYSTEM DEMONSTRATION REQUIREMENTS FOR CERTIFICATION

(1) General.

(1.1) Certification requires that manufacturers submit emission test data from one or more durability demonstration test vehicles (test vehicles). For applications certified on engine dynamometers, engines may be used instead of vehicles.

(1.2) The Executive Officer may approve other demonstration protocols if the manufacturer can provide comparable assurance that the malfunction criteria
are chosen based on meeting emission requirements and that the timeliness of malfunction detection is within the constraints of the applicable monitoring requirements.

(1.3) For flexible fuel vehicles capable of operating on more than one fuel or fuel combinations, the manufacturer shall submit a plan for providing emission test data to the Executive Officer for approval. The Executive Officer shall approve the plan if it is determined to be representative of expected in-use fuel or fuel combinations and provides accurate and timely evaluation of the monitored systems.

(2) Selection of Test Vehicles:
 (2.1.1) Prior to submitting any applications for certification for a model year, a manufacturer shall notify the Executive Officer of the test groups planned for that model year. The Executive Officer will then select the test group(s) that the manufacturer shall use as demonstration test vehicles to provide emission test data.
 (2.1.2) A manufacturer certifying one to five test groups in a model year shall provide emission test data from a test vehicle from one test group. A manufacturer certifying six to ten test groups in a model year shall provide emission test data from test vehicles from two test groups. A manufacturer certifying eleven or more test groups in a model year shall provide emission test data from test vehicles from three test groups. The Executive Officer may waive the requirement for submittal of data from one or more of the test groups if data has been previously submitted for all of the test groups.
 (2.1.3) For the test vehicle(s), a manufacturer shall use a certification emission durability test vehicle(s), a representative high mileage vehicle(s), or a vehicle(s) aged to the end of the full useful life using an ARB-approved alternative durability procedure (ADP).

(3) Required Testing:
 Except as provided below, the manufacturer shall perform single-fault testing based on the applicable FTP test with the following components/systems set at their malfunction criteria limits as determined by the manufacturer for meeting the requirements of section (e):
 (3.1) Oxygen Sensors:
 (3.1.1) The manufacturer shall perform a test with all primary oxygen sensors used for fuel control simultaneously possessing a response rate deteriorated to the malfunction criteria limit. Manufacturers shall also perform a test for any other oxygen sensor parameter that can cause vehicle emissions to exceed 1.5 times the applicable standards (e.g., shift in air/fuel ratio at which oxygen sensor switches, decreased amplitude, etc.). When performing additional test(s), all primary and secondary (if applicable) oxygen sensors used for fuel control shall be operating at the malfunction criteria limit for the applicable parameter only. All other primary and secondary oxygen sensor parameters shall be with normal characteristics.
 (3.1.2) For vehicles utilizing sensors other than oxygen sensors for primary fuel control (e.g., linear air-fuel ratio sensors, universal sensors, etc.), the manufacturer shall submit, for Executive Officer approval, a demonstration
test plan for performing testing of all of the sensor parameters that can cause vehicle emissions to exceed 1.5 times the applicable standards. The Executive Officer shall approve the plan if it is determined that it will provide data that will assure proper performance of the diagnostics of the sensors, consistent with the intent of section (g).

(3.2) EGR System: The manufacturer shall perform a test at the low flow limit.

(3.3) VVT System: For 2005 and subsequent model year Low Emission II applications, the manufacturer shall perform a test at each target error limit and slow response limit calibrated to the malfunction criteria (e.g., 1.5 times the FTP standard) in sections (e)(13.2.1) and (13.2.2). In conducting the VVT system demonstration tests, the manufacturer may use computer modifications to cause the VVT system to operate at the malfunction limit if the manufacturer can demonstrate that the computer modifications produce test results equivalent to an induced hardware malfunction.

(3.4) Fuel System:

(3.4.1) For vehicles with adaptive feedback based on the primary fuel control sensor(s), the manufacturer shall perform a test with the adaptive feedback based on the primary fuel control sensor(s) at the rich limit(s) and a test at the lean limit(s) established by the manufacturer in section (e)(6.2.1) to detect a malfunction before emissions exceed 1.5 times the applicable standards.

(3.4.2) For vehicles with feedback based on a secondary fuel control sensor(s) and subject to the malfunction criteria in section (e)(6.2.1), the manufacturer shall perform a test with the feedback based on the secondary fuel control sensor(s) at the rich limit(s) and a test at the lean limit(s) established by the manufacturer in section (e)(6.2.1) to detect a malfunction before emissions exceed 1.5 times the applicable standards.

(3.4.3) For other fuel metering or control systems, the manufacturer shall perform a test at the criteria limit(s).

(3.4.4) For purposes of fuel system testing, the fault(s) induced may result in a uniform distribution of fuel and air among the cylinders. Non-uniform distribution of fuel and air used to induce a fault may not cause misfire. In conducting the fuel system demonstration tests, the manufacturer may use computer modifications to cause the fuel system to operate at the malfunction limit if the manufacturer can demonstrate that the computer modifications produce test results equivalent to an induced hardware malfunction.

(3.5) Misfire: The manufacturer shall perform a test at the malfunction criteria limit specified in section (e)(3.2.2). The testing is not required for diesel applications.

(3.6) Secondary Air System: The manufacturer shall perform a test at the low flow limit. Manufacturers performing only a functional check in accordance with the provisions of section (e)(5.2.2)(B) or (e)(5.2.4) shall perform a test at the functional check flow malfunction criteria.

(3.7) Catalyst System: The manufacturer shall perform a test using a catalyst system deteriorated to the malfunction criteria using methods established by the manufacturer in accordance with section (e)(1.2.6). For diesel vehicles, the
manufacturer shall perform a test using a catalyst system deteriorated to the malfunction criteria in sections (e)(1.5.2)(A)(i), (B)(i), or (C)(i). For diesel vehicles with catalyst systems not subject to the malfunction criteria in section (e)(1.5.2)(A)(i), (B)(i), or (C)(i), manufacturers are not required to perform a catalyst demonstration test.

(3.8) Heated Catalyst Systems: The manufacturer shall perform a test at the malfunction criteria limit established by the manufacturer in section (e)(2.2).

(3.9) PM Trap: The manufacturer shall perform a test using a PM trap(s) deteriorated to the malfunction criteria in sections (e)(15.2.1) or (15.2.3). For diesel vehicles with a PM trap(s) not subject to the malfunction criteria in section (e)(15.2.1) or (15.2.3), manufacturers are not required to perform a PM trap(s) demonstration test.

(3.10) Other systems: The manufacturer shall conduct demonstration tests for all other emission control components designed and calibrated to a malfunction criteria of 1.5 times any of the applicable emission standards (e.g., hydrocarbon traps, adsorbers, etc.) under the provisions of section (e)(17).

(3.11) The manufacturer may electronically simulate deteriorated components but may not make any vehicle control unit modifications (unless otherwise excepted above) when performing demonstration tests. All equipment necessary to duplicate the demonstration test must be made available to the ARB upon request.

(4) Testing Protocol:

(4.1) Preconditioning: The manufacturer shall use an applicable FTP cycle (or Unified Cycle, if approved) for preconditioning test vehicles prior to conducting each of the above emission tests. If a manufacturer provides data and/or an engineering evaluation that adequately demonstrates that additional preconditioning is necessary to stabilize the emission control system, the Executive Officer shall allow the manufacturer to perform a single additional preconditioning cycle, identical to the initial preconditioning cycle, or a Federal Highway Fuel Economy Driving Cycle, following a ten minute (20 minutes for medium duty engines certified on an engine dynamometer) hot soak after the initial preconditioning cycle. The manufacturer may not require the test vehicle to be cold soaked prior to conducting preconditioning cycles in order for the monitoring system testing to be successful.

(4.2) Test Sequence:

(4.2.1) The manufacturer shall set the system or component on the test vehicle for which detection is to be tested at the criteria limit(s) prior to conducting the applicable preconditioning cycle(s). If a second preconditioning cycle is permitted in accordance with section (g)(4.1) above, the manufacturer may adjust the system or component to be tested before conducting the second preconditioning cycle. The manufacturer may not replace, modify, or adjust the system or component after the last preconditioning cycle has taken place.

(4.2.2) After preconditioning, the test vehicle shall be operated over the applicable FTP cycle (or Unified Cycle, if approved) to allow for the initial detection of the tested system or component malfunction. This driving cycle may be omitted from the testing protocol if it is unnecessary. If required by the
designated monitoring strategy, a cold soak may be performed prior to conducting this driving cycle.

(4.2.3) The test vehicle shall then be operated over the cold start and hot start exhaust tests of the applicable FTP test. If monitoring during the Unified Cycle is approved, a second Unified Cycle may be conducted prior to the FTP test.

(4.3) A manufacturer required to test more than one test vehicle (section (g)(2.1.2)) may utilize internal calibration sign-off test procedures (e.g., forced cool downs, less frequently calibrated emission analyzers, etc.) instead of official FTP test procedures to obtain the emission test data required in section (g) for all but one of the required test vehicles. The manufacturer may elect this option if the data from the alternative test procedure are representative of official FTP emission test results. Manufacturers using this option are still responsible for meeting the malfunction criteria specified in section (e) when emission tests are performed in accordance with official FTP test procedures.

(5) Evaluation Protocol:

(5.1.1) For all tests conducted under section (g), the MIL shall be illuminated upon detection of the tested system or component malfunction before the hot start exhaust test of the complete FTP test (or before the hot start portion of the last Unified Cycle, if applicable) in accordance with requirements of section (e).

(5.1.2) For all tests conducted under section (g), manufacturers may use Non-Methane Hydrocarbon (NMHC) emission results in lieu of Non-Methane Organic Gas (NMOG) emission results for comparison to the applicable FTP standards or malfunction criteria (e.g., 1.5 times the FTP standards). If NMHC emission results are used in lieu of NMOG, the emission result shall be multiplied by 1.04 to generate an equivalent NMOG result before comparison to the applicable FTP standards.

(5.1.3) If the MIL illuminates prior to emissions exceeding the applicable malfunction criteria specified in section (e), no further demonstration is required. With respect to the misfire monitor demonstration test, if a manufacturer has elected to use the minimum misfire malfunction criteria of one percent as allowed in section (e)(3.2.2)(A), no further demonstration is required if the MIL illuminates with misfire implanted at the malfunction criteria limit.

(5.1.4) If the MIL does not illuminate when the systems or components are set at their limit(s), the criteria limit or the OBD II system is not acceptable.

(A) Except for testing of the catalyst system, if the MIL first illuminates after emissions exceed the applicable malfunction criteria specified in section (e), the test vehicle shall be retested with the tested system or component adjusted so that the MIL will illuminate before emissions exceed the applicable malfunction criteria specified in section (e). If the component cannot be adjusted to meet this criterion because a default fuel or emission control strategy is used when a malfunction is detected (e.g., open loop fuel control used after an O2 sensor malfunction is determined, etc.), the test vehicle shall be retested with the component adjusted to the worst acceptable limit (i.e., the applicable monitor indicates the component is
performing at or slightly better than the malfunction criteria). For the OBD II system to be approved, the MIL must not illuminate during this test and the vehicle emissions must be below the applicable malfunction criteria specified in section (e).

(B) In testing the catalyst system, if the MIL first illuminates after emissions exceed the applicable emission threshold(s) specified in section (e), the tested vehicle shall be retested with a less deteriorated catalyst system (i.e., more of the applicable engine out pollutants are converted). For the OBD II system to be approved, testing shall be continued until either of the following conditions are satisfied:

(i) The MIL is illuminated and emissions do not exceed the thresholds specified in section (e); or

(ii) The manufacturer demonstrates that the MIL illuminates within acceptable upper and lower limits of the threshold specified in section (e) for MIL illumination. The manufacturer shall demonstrate acceptable limits by continuing testing until the test results show:

a. The MIL is illuminated and emissions exceed the thresholds specified in section (e) by 10 percent or less of the applicable standard (e.g., emissions are less than 1.85 times the applicable standard for a malfunction criterion of 1.75 times the standard); and

b. The MIL is not illuminated and emissions are below the thresholds specified in section (e) by no more than 20 percent of the standard (e.g., emissions are between 1.55 and 1.75 times the applicable standard for a malfunction criterion of 1.75 times the standard).

(5.1.5) If an OBD II system is determined unacceptable by the above criteria, the manufacturer may recalibrate and retest the system on the same test vehicle. In such a case, the manufacturer must confirm, by retesting, that all systems and components that were tested prior to recalibration and are affected by the recalibration function properly under the OBD II system as recalibrated.

(6) Confirmatory Testing:

(6.1) The ARB may perform confirmatory testing to verify the emission test data submitted by the manufacturer under the requirements of section (g) complies with the requirements of section (g) and the malfunction criteria identified in section (e). This confirmatory testing is limited to vehicles in the OBD II group represented by the demonstration vehicle(s).

(6.2) The ARB or its designee may install appropriately deteriorated or malfunctioning components in an otherwise properly functioning test vehicle of a test group represented by the demonstration test vehicle(s) (or simulate a deteriorated or malfunctioning component) in order to test any of the components or systems required to be tested in section (g). Upon request by the Executive Officer, the manufacturer shall make available a vehicle and all test equipment (e.g., malfunction simulators, deteriorated components, etc.) necessary to duplicate the manufacturer’s testing. The Executive Officer shall make the request within six months of reviewing and approving the demonstration test vehicle data submitted by the manufacturer for the specific test group.

(6.3) Vehicles with OBD II systems represented by the demonstration vehicle(s) may
be recalled for corrective action if a representative sample of vehicles uniformly fails to meet the requirements of section (g).

(h) CERTIFICATION DOCUMENTATION

(1) When submitting an application for certification of a test group, the manufacturer shall submit the following documentation. If any of the items listed below are standardized for all of a manufacturer's test groups, the manufacturer may, for each model year, submit one set of documents covering the standardized items for all of its test groups.

(1.1) For the required documentation not standardized across all test groups, the manufacturer may propose to the Executive Officer that documentation covering a specified combination of test groups be used. These combinations shall be known as "OBD II groups". Executive Officer approval shall be granted for those groupings that include test groups using the same OBD II strategies and similar calibrations. If approved by the Executive Officer, the manufacturer may submit one set of documentation from one or more representative test group(s) that are a part of the OBD II group. The Executive Officer shall determine whether a selected test group(s) is representative of the OBD II group as a whole. To be approved as representative, the test group(s) must possess the most stringent emission standards and OBD II monitoring requirements and cover all of the emission control devices within the OBD II group.

(1.2) With Executive Officer approval, one or more of the documentation requirements of section (h) may be waived or modified if the information required would be redundant or unnecessarily burdensome to generate.

(1.3) To the extent possible, the certification documentation shall use SAE J1930 terms, abbreviations, and acronyms.

(2) The following information shall be submitted as "Part 1" of the certification application. Except as provided below for demonstration data, the Executive Officer will not issue an Executive Order certifying the covered vehicles without the information having been provided. The information must include:

(2.1) A description of the functional operation of the OBD II system including a complete written description for each monitoring strategy that outlines every step in the decision making process of the monitor. Algorithms, diagrams, samples of data, and/or other graphical representations of the monitoring strategy shall be included where necessary to adequately describe the information.

(2.2.1) The table must include the following information for each monitored component or system (either computer-sensed or -controlled) of the emission control system:

(A) corresponding fault code
(B) monitoring method or procedure for malfunction detection
(C) primary malfunction detection parameter and its type of output signal
(D) fault criteria limits used to evaluate output signal of primary parameter
(E) other monitored secondary parameters and conditions (in engineering units) necessary for malfunction detection
(F) monitoring time length and frequency of checks
(G) criteria for storing fault code
(H) criteria for illuminating malfunction indicator light
(I) criteria used for determining out of range values and input component rationality checks

(2.2.2) Wherever possible, the table shall use the following engineering units:
(A) Degrees Celsius (°C) for all temperature criteria
(B) KiloPascals (KPa) for all pressure criteria related to manifold or atmospheric pressure
(C) Grams (g) for all intake air mass criteria
(D) Pascals (Pa) for all pressure criteria related to evaporative system vapor pressure
(E) Miles per hour (mph) for all vehicle speed criteria
(F) Relative percent (%) for all relative throttle position criteria (as defined in ISO 15031-5)
(G) Voltage (V) for all absolute throttle position criteria (as defined in ISO 15031-5)
(H) Per crankshaft revolution (/rev) for all changes per ignition event based criteria (e.g., g/rev instead of g/stroke or g/firing)
(I) Per second (/sec) for all changes per time based criteria (e.g., g/sec)
(J) Percent of nominal tank volume (%) for all fuel tank level criteria

(2.3) A logic flowchart describing the step by step evaluation of the enable criteria and malfunction criteria for each monitored emission-related component or system.

(2.4) Emission test data, a description of the testing sequence (e.g., the number and types of preconditioning cycles), approximate time (in seconds) of MIL illumination during the test, fault code(s) and freeze frame information stored at the time of detection, corresponding SAE J1979 test results (e.g. Mode $06) stored during the test, and a description of the modified or deteriorated components used for fault simulation with respect to the demonstration tests specified in section (g). The Executive Officer may approve conditional certification of a test group prior to the submittal of this data for ARB review and approval. Factors to be considered by the Executive Officer in approving the late submission of information identified in section (h)(2.4) shall include the reason for the delay in the data collection, the length of time until data will be available, and the demonstrated previous success of the manufacturer in submitting the data prior to certification.

(2.5) Data supporting the misfire monitor, including:
(2.5.1) The established percentage of misfire that can be tolerated without damaging the catalyst over the full range of engine speed and load conditions.
(2.5.2) Data demonstrating the probability of detection of misfire events of the misfire monitoring system over the full engine speed and load operating range for the following misfire patterns: random cylinders misfiring at the malfunction criteria established in section (e)(3.2.2), one cylinder continuously misfiring, and paired cylinders continuously misfiring.
(2.5.3) Data identifying all disablement of misfire monitoring that occurs during the FTP and US06 cycles. For every disablement that occurs during the cycles, the data should identify: when the disablement occurred relative to the driver’s trace, the number of engine revolutions that each disablement was present for, and which disable condition documented in the certification application caused the disablement.

(2.5.4) Manufacturers are not required to use the durability demonstration vehicle to collect the misfire data for sections (h)(2.5.1) though (2.5.3).

(2.6) Data supporting the limit for the time between engine starting and attaining the designated heating temperature for after-start heated catalyst systems.

(2.7) A listing of all electronic powertrain input and output signals (including those not monitored by the OBD II system) that identifies which signals are monitored by the OBD II system.

(2.8) A written description of all parameters and conditions necessary to begin closed loop operation.

(2.9) A summary table identifying every test group and each of the OBD II phase-in requirements that apply to each test group.

(2.10) A written identification of the communication protocol utilized by each test group for communication with an SAE J1978 scan tool.

(2.11) A pictorial representation or written description of the diagnostic connector location including any covers or labels.

(2.12) A written description of the method used by the manufacturer to meet the requirements of section (e)(9) for PCV system monitoring including diagrams or pictures of valve and/or hose connections.

(2.13) Any other information determined by the Executive Officer to be necessary to demonstrate compliance with the requirements of this regulation.

(3) “Part 2”. The following information shall be submitted by January 1st of the applicable model year:

(3.1) A listing and block diagram of the input parameters used to calculate or determine calculated load values and the input parameters used to calculate or determine fuel trim values.

(3.2) A scale drawing of the MIL and the fuel cap indicator light, if present, which specifies location in the instrument panel, wording, color, and intensity.

(4) “Part 3”. The following information shall be submitted upon request of the Executive Officer:

(4.1) Data supporting the criteria used to detect a malfunction when catalyst deterioration causes emissions to exceed the applicable malfunction criteria specified in section (e).

(4.2) Data supporting the criteria used to detect evaporative system leaks.

(4.3) Any other information determined by the Executive Officer to be necessary to demonstrate compliance with the requirements of this regulation.

(i) DEFICIENCIES

(1) For 2004 and subsequent model year vehicles, the Executive Officer, upon receipt of an application from the manufacturer, may certify vehicles even though said vehicles may not comply with one or more of the requirements of title 13, CCR
section 1968.2. In granting the certification, the Executive Officer shall consider the following factors: the extent to which the requirements of section 1968.2 are satisfied overall based on a review of the vehicle applications in question, the relative performance of the resultant OBD II system compared to systems fully compliant with the requirements of title 13, CCR section 1968.2, and a demonstrated good-faith effort on the part of the manufacturer to: (1) meet the requirements in full by evaluating and considering the best available monitoring technology; and (2) come into compliance as expeditiously as possible. The Executive Officer may not grant certification to a vehicle in which the reported noncompliance for which a deficiency is sought would be subject to ordered recall pursuant to section 1968.5 (c)(3)(A).

(2) Manufacturers of non-complying systems are subject to fines pursuant to section 43016 of the California Health and Safety Code. The specified fines apply to the third and subsequently identified deficiencies, with the exception that fines shall apply to all monitoring system deficiencies wherein a required monitoring strategy is completely absent from the OBD system.

(3) The fines are in the amount of $50 per deficiency per vehicle for non-compliance with any of the monitoring requirements specified in sections (e)(1) through (e)(8), (e)(11), (e)(13) through (e)(15), and (e)(17), and $25 per deficiency per vehicle for non-compliance with any other requirement of section 1968.2. In determining the identified order of deficiencies, deficiencies subject to a $50 fine are identified first. Total fines per vehicle under section (i) may not exceed $500 per vehicle and are payable to the State Treasurer for deposit in the Air Pollution Control Fund.

(4) Manufacturers must re-apply for Executive Officer approval of a deficiency each model year. In considering the request to carry-over a deficiency, the Executive Officer shall consider the factors identified in section (i)(1) including the manufacturer’s progress towards correcting the deficiency. The Executive Officer may not allow manufacturers to carry over monitoring system deficiencies for more than two model years unless it can be adequately demonstrated that substantial vehicle hardware modifications and additional lead time beyond two years would be necessary to correct the deficiency, in which case the Executive Officer shall allow the deficiency to be carried over for three model years.

(5) Except as allowed in section (i)(6), deficiencies may not be retroactively granted after certification.

(6) Request for retroactive deficiencies

(6.1) Manufacturers may request that the Executive Officer grant a deficiency and amend a vehicle’s certification to conform to the granting of the deficiencies during the first 120 days after commencement of normal production for each aspect of the monitoring system: (a) identified by the manufacturer (during testing required by section (j)(2) or any other testing) to be functioning different than the certified system or otherwise not meeting the requirements of any aspect of section 1968.2; and (b) reported to the Executive Officer. If the Executive Officer grants the deficiencies and amended certification, their approval would be retroactive to the start of production.

(6.2) Executive Officer approval of the request for a retroactive deficiency shall be granted provided that the conditions necessary for a pre-certification deficiency
determination are satisfied (see section (i)(1)) and the manufacturer could not have reasonably anticipated the identified problem before commencement of production.

(6.3) In granting the amended certification, the Executive Officer shall include any approved post-production deficiencies together with all previously approved deficiencies in computing fines in accordance with section (i)(2).

(7) Any OBD II system installed on a production vehicle that fails to conform with the certified OBD II system for that vehicle or otherwise fails to meet the requirements of section 1968.2 and has not been granted a deficiency pursuant to the provisions of section (i)(1) through (i)(6) are considered non-compliant. The vehicles are subject to enforcement pursuant to applicable provisions of the Health and Safety Code and title 13, CCR section 1968.5.

(j) PRODUCTION VEHICLE EVALUATION TESTING

(1) Verification of Standardized Requirements

(1.1) Requirement: For 2005 and subsequent model year vehicles, manufacturers shall perform testing to verify that all vehicles using ISO 15765-4 as the OBD II system communication protocol (see section (f)(3.4)) meet the requirements of section (f)(3) and (f)(4) relevant to proper communication of required emission-related messages to an SAE J1978 scan tool.

(1.2) Selection of Test Vehicles: Manufacturers shall perform this testing every model year on one production vehicle from every unique calibration within 30 days of the start of production for that calibration. Manufacturers may request Executive Officer approval to group multiple calibrations together and test one representative calibration per group. The Executive Officer shall approve the request upon finding that the software designed to comply with the standardization requirements of section (f) in the representative calibration vehicle is identical (e.g., communication protocol message timing, number of supported data stream parameters, etc.) to all others in the group and that any differences in the calibrations are not relevant with respect to meeting the criteria in section (j)(1.4).

(1.3) Test Equipment: For the testing required in section (j)(1), manufacturers shall utilize an off-board device to conduct the testing. Prior to conducting testing, manufacturers are required to request and receive Executive Officer approval of the off-board device that the manufacturer will use to perform the testing. The Executive Officer shall approve the request upon the manufacturer submitting data, specifications, and/or engineering analysis that demonstrate that the off-board device will verify vehicles will be able to perform all of the required functions in section (j)(1.4) with any other off-board device designed and built in accordance with the SAE J1978 generic scan tool specifications.

(1.4) Required Testing:

(1.4.1) The testing shall verify that the vehicle can properly establish communications between all emission-related on-board computers and any SAE J1978 scan tool designed to adhere strictly to the communication protocols allowed in section (f)(3);
(1.4.2) The testing shall further verify that the vehicle can properly communicate to any SAE J1978 scan tool:

(A) The current readiness status from all on-board computers required to support readiness status in accordance with ISO 15031-5 and section (f)(4.1) while the engine is running;

(B) The MIL command status while the MIL is commanded off and while the MIL is commanded on in accordance with ISO 15031-5 and section (f)(4.2) while the engine is running and in accordance with ISO 15031-5 and sections (d)(2.5) and (f)(4.1.3) during the MIL functional check while the engine is off;

(C) All data stream parameters required in section (f)(4.2) in accordance with ISO 15031-5 including the identification of each data stream parameter as supported in ISO 15031-5 (e.g., Mode 01, PID 00);

(D) The CAL ID, CVN, and VIN (if applicable) in accordance with ISO 15031-5 and sections (f)(4.6) through (4.8);

(E) An emission-related fault code (both confirmed and pending) in accordance with ISO 15031-5 (including correctly indicating the number of stored fault codes (e.g., Mode 01, PID 01, Data A)) and section (f)(4.4);

(1.4.3) The testing shall also verify that the vehicle can properly respond to any SAE J1978 scan tool request to clear emission-related fault codes and reset readiness status.

(1.5) Reporting of Results:

(1.5.1) The manufacturer shall notify the Executive Officer within 30 days of identifying any vehicle that does not meet the requirements of section (j)(1.4). The manufacturer shall submit a written report of the problem(s) identified and propose corrective action (if any) to remedy the problem(s) to the Executive Officer for approval. Factors to be considered by the Executive Officer in approving the proposed corrective action shall include the severity of the problem(s), the ability of the vehicle to be tested in an I/M program, the ability of service technicians to access the required diagnostic information, the impact on equipment and tool manufacturers, and the amount of time prior to implementation of the proposed corrective action.

(1.5.2) Upon request of the Executive Officer, a manufacturer shall submit a report of the results of any testing conducted pursuant to section (j)(1) to the Executive Officer for review.

(1.5.3) In accordance with section (i)(6), manufacturers may request Executive Officer approval for a retroactive deficiency to be granted for items identified during this testing.

(2) Verification of Monitoring Requirements

(2.1) Within the first four months after production begins, manufacturers shall conduct a complete evaluation of the OBD II system of one production vehicle per test group selected for monitoring system demonstration in section (g) and submit the results of the evaluation to the Executive Officer.

(2.2) Evaluation requirements:

(2.2.1) The evaluation shall demonstrate the ability of the OBD II system on the selected production vehicle to detect a malfunction, illuminate the MIL, and
store a confirmed fault code when a malfunction is present and the monitoring conditions have been satisfied for each individual diagnostic required by title 13, CCR section 1968.2.

(2.2.2) The evaluation shall verify that malfunctions detected by non-MIL illuminating diagnostics of components used to enable any other OBD II system diagnostic (e.g., fuel level sensor) will not inhibit the ability of other OBD II system diagnostics to properly detect malfunctions.

(2.2.3) On vehicles so equipped, the evaluation shall verify that the software used to track the numerator and denominator for purposes of determining in-use monitoring frequency correctly increments as required in section (d)(4).

(2.2.4) Malfunctions may be mechanically implanted or electronically simulated but internal on-board computer hardware or software changes may not be used to simulate malfunctions. Emission testing to confirm that the malfunction is detected before the appropriate emission standards are exceeded is not required.

(2.2.5) Manufacturers shall submit a proposed test plan for Executive Officer approval prior to evaluation testing being performed. The test plan shall identify the method used to induce a malfunction in each diagnostic. If the Executive Officer determines that the requirements of section (j)(2) are satisfied, the proposed test plan shall be approved.

(2.2.6) Subject to Executive Officer approval, manufacturers may omit demonstration of specific diagnostics. The Executive Officer shall approve a manufacturer’s request if the demonstration cannot be reasonably performed without causing physical damage to the vehicle (e.g., on-board computer internal circuit faults).

(2.2.7) For this evaluation, manufacturers are not required to demonstrate diagnostics that were previously demonstrated prior to certification as required in section (g).

(2.3) Manufacturers shall submit a report of the results of all testing conducted pursuant to section (j)(2) to the Executive Officer for review. This report shall identify the method used to induce a malfunction in each diagnostic, the MIL illumination status, and the confirmed fault code(s) stored.

(2.4) In accordance with section (i)(6), manufacturers may request Executive Officer approval for a retroactive deficiency to be granted for items identified during this testing.

(3) Verification and Reporting of In-use Monitoring Performance

(3.1) Manufacturers are required to collect and report in-use monitoring performance data representative of every test group certified by the manufacturer and equipped with in-use monitoring performance tracking software in accordance with section (d)(4) to the ARB within six months after the start of production.

(3.2) For each test group, the data must include all of the in-use performance tracking data reported through SAE J1979 (i.e., all numerators, denominators, and the ignition cycle counter), the date the data was collected, the vehicle VIN, and the ECM software calibration identification number.
(3.3) Manufacturers shall submit a plan to the Executive Officer for review and approval of the sampling method, number of vehicles to be sampled, time line to collect the data, and reporting format. The Executive Officer shall approve the plan if it provides for effective collection of data from a representative sample of vehicles that, at a minimum, is thirty vehicles, will likely result in the collection and submittal of data within the required six month time frame, will generate data that is representative of California drivers and temperatures, and does not, by design, exclude or include specific vehicles in an attempt to collect data only from vehicles with the highest in-use performance ratios.

(3.4) Upon request of the manufacturer, the Executive Officer may for good cause extend the six month time requirement set forth in section (j)(3.1) up to a maximum of twelve months. In granting additional time, the Executive Officer shall consider, among other things, information submitted by the manufacturer to justify the delay, sales volume of the test group, and the sampling mechanism utilized by the manufacturer to procure vehicles. If an extension beyond six months is granted, the manufacturer shall additionally be required to submit an interim report within six months for data collected up to the time of the interim report.