PROPOSED 15-DAY MODIFICATIONS

California Environmental Protection Agency
AIR RESOURCES BOARD

Compliance Offset Protocol
Mine Methane Capture Projects

Capturing and Destroying Methane From
U.S. Coal and Trona Mines

Discussion Draft 1/31/2014

Adopted: [INSERT Date of Board Adoption]

Note: Proposed 15-day regulatory amendments to the Compliance Offset Protocol Mine Methane Capture Projects are shown in single underline and single strikethrough.
Table of Contents

Chapter 1. Purpose and Definitions.. 1

§ 1.1. Purpose... 1
§ 1.2. Definitions.. 1

Chapter 2. Eligible Activities – Quantification Methodology... 12

§ 2.1. Active Underground Mine Ventilation Air Methane Activities... 12
§ 2.2. Active Underground Mine Methane Drainage Activities... 13
§ 2.3. Active Surface Mine Methane Drainage Activities... 15
§ 2.4. Abandoned Underground Mine Methane Recovery Activities... 16

Chapter 3. Eligibility.. 18

§ 3.1. General Eligibility Requirements.. 18
§ 3.2. Location.. 19
§ 3.3. Offset Project Operator or Authorized Project Designee.. 20
§ 3.4. Additionality.. 20
§ 3.4.1. Legal Requirement Test... 20
§ 3.4.2. Performance Standard Evaluation... 21
§ 3.5. Methane Source Boundaries.. 22
§ 3.6. Offset Project Commencement.. 24
§ 3.7. Project Crediting Period... 24
§ 3.8. Regulatory Compliance... 24

Chapter 4. GHG Assessment Offset Project Boundary – Quantification Methodology... 25

§ 4.1. Active Underground Mine VAM Activities.. 25

Figure 4.1. Illustration of the greenhouse gas assessment offset project boundary for active underground mine VAM activities.. 26

Table 4.1. List of the greenhouse gas sinks, sources, and reservoirs for active underground mine VAM activities... 27
§4.2. Active Underground Mine Methane Drainage Activities 27

Figure 4.2. Illustration of the greenhouse gas assessment offset project boundary for active underground mine methane drainage activities. 28

Table 4.2. List of identified greenhouse gas sinks, sources, and reservoirs for active underground mine methane drainage activities ... 29

§4.3. Active Surface Mine Methane Drainage Activities 30

Figure 4.3. Illustration of the greenhouse gas assessment offset project boundary for active surface mine methane drainage activities. .. 31

Table 4.3. List of the greenhouse gas sinks, sources, and reservoirs for active surface mine methane drainage activities ... 31

§4.4. Abandoned Underground Mine Methane Recovery Activities 33

Figure 4.4. Illustration of the greenhouse gas assessment offset project boundary for abandoned underground mine methane recovery activities. 33

Table 4.4. List of the greenhouse gas sinks, sources, and reservoirs for abandoned underground mine methane recovery activities ... 34

Chapter 5. Quantifying GHG Emission Reductions – Quantification Methodology 35

§5.1. Active Underground Mine Ventilation Air Methane Activities 36

§5.1.1. Quantifying Baseline Emissions .. 36

§5.1.2. Quantifying Project Emissions ... 44

§5.2. Active Underground Mine Methane Drainage Activities 51

§5.2.1. Quantifying Baseline Emissions .. 52

§5.2.2. Quantifying Project Emissions ... 61

§5.3. Active Surface Mine Methane Drainage Activities 69

§5.3.1. Quantifying Baseline Emissions .. 69

§5.3.2. Quantifying Project Emissions ... 81

§5.4. Abandoned Underground Mine Methane Recovery Activities 88
§ 5.4.1 Quantifying Baseline Emissions: ... 89
§ 5.4.2. Quantifying Project Emissions... 98

Chapter 6. Monitoring – Quantification Methodology ... 104
§ 6.1. General Monitoring Requirements... 104
§ 6.2. Instrument QA/QC... 105
§ 6.3. Document Retention... 107
§ 6.4. Active Underground Mine Ventilation Air Methane Activities................. 109
 Table 6.1. Active Underground Mine VAM Activity Monitoring Parameters—
 Quantification Methodology... 109
§ 6.5. Active Underground Mine Methane Drainage Activities........................... 113
 Table 6.2. Active Underground Mine Methane Drainage Activity Monitoring
 Parameters—Quantification Methodology.. 115
§ 6.6. Active Surface Mine Methane Drainage Activities....................................... 121
 Table 6.3. Active Surface Mine Methane Drainage Activity Monitoring Parameters—
 Quantification Methodology... 123
§ 6.7. Abandoned Underground Mine Methane Recovery Activities.................... 134
 Table 6.4. Abandoned Underground Mine Methane Recovery Activity Monitoring
 Parameters—Quantification Methodology.. 136

Chapter 7. Reporting .. 141
§ 7.1. Listing Requirements.. 141
§ 7.2. Offset Project Data Report... 152

Chapter 8. Verification .. 160

Appendix A. Emission Factors – Quantification Methodology............................ 161
 Table A.1 CO₂ Emission Factors for Fossil Fuel Use.. 161
 Table A.2 Emissions & Generation Resource Integrated Database (eGRID) Table
 ... 163
Appendix B. Device Destruction Efficiencies – Quantification Methodology…………….. 164

Table B.1 Default Methane Destruction Efficiencies by Destruction Device……… 164

Appendix C. Data Substitution Methodology – Quantification Methodology……………… 165

Table C.1 ……………………………………………………………………………………………………….. 166
Chapter 1: Purpose and Definitions

§ 1.1. Purpose.
(a) The purpose of the Compliance Offset Protocol Mine Methane Capture Projects (protocol) is to quantify greenhouse gas (GHG) emission reductions associated with the capture and destruction of methane (CH$_4$) that would otherwise be vented into the atmosphere as a result of mining operations at active underground and surface coal and trona mines and abandoned underground coal mines.

(b) AB 32 exempts quantification methodologies from the Administrative Procedure Act (APA);¹ however those elements of the protocol are still regulatory. The exemption allows future updates to the quantification methodologies to be made through a public review and Board adoption process but without the need for rulemaking documents. Each protocol identifies sections that are considered quantification methodologies and exempt from APA requirements. Any changes to the non-quantification elements of the offset protocols would be considered a regulatory update subject to the full regulatory development process. Those sections that are considered to be a quantification methodology are clearly indicated in the title of the chapter or subchapter if only a portion of that chapter is considered part of the quantification methodology of the protocol.

§ 1.2. Definitions.
(a) For the purposes of this protocol, the following definitions apply:

(1) “Abandoned Underground Mine” means a mine where all mining activity including mine development and mineral production has ceased, mine personnel are not present in the mine workings, and mine ventilation fans are no longer operative. A mine must be classified by the Mine Safety and Health Administration (MSHA) as abandoned or temporarily idle/abandoned and sealed in order to be eligible for an abandoned mine methane recovery activity.

¹ Health and Safety Code section 38571
(2) “Abandoned Mine Methane” or “AMM” means methane released from an abandoned mine.

(3) “Accuracy” is defined in section 95102 of the Mandatory Reporting Regulation means the closeness of the agreement between the result of the measurement and the true value of the particular quantity (or a reference value determined empirically using internationally accepted and traceable calibration materials and standard methods), taking into account both random and systematic factors.

(4) “Active Surface Mine” means a permitted mine in which the mineral lies near the surface and can be extracted by removing the covering layers of rock and soil. A mine must be classified by the Mine Safety and Health Administration (MSHA) as active, or intermittent, or temporarily idle in order to be eligible for an active surface mine methane drainage activity.

(5) “Active Underground Mine” means a permitted mine usually located several hundred feet below the earth’s surface. A mine must be classified by the Mine Safety and Health Administration (MSHA) as active, or intermittent, or temporarily idle in order to be eligible for an active underground mine methane drainage or ventilation air methane activity.

(8) “Boiler” means a closed vessel or arrangement of vessels and tubes, together with a furnace or other heat source, in which water is heated to produce hot water or steam.

(9) “Borehole” means a hole made with a drill, augur, or other tool into a coal seam or surrounding strata from which natural mine gas is extracted.
“Cap-and-Trade Regulation” or “Regulation” or “Cap-and-Trade Program” means ARB’s regulation establishing the California Cap on Greenhouse Gas Emissions and Market-Based Compliance Mechanisms as set forth in title 17, California Code of Regulations, chapter 1, subchapter 10, article 5 (commencing with section 95800).

“Coal” is defined in section 95102 of the Mandatory Reporting Regulation means all solid fuels classified as anthracite, bituminous, sub-bituminous, or lignite by the American Society for Testing and Materials Designation ASTM D388-05 “Standard Classification of Coals by Rank” (2005), which is hereby incorporated by reference.

“Coal Bed Methane” or “CBM” or “Virgin Coal Bed Methane” means methane-rich natural gas drained from coal seams and surrounding strata not disturbed by mining. The extraction, capture, and destruction of virgin coal bed methane are unrelated to mining activities and are not eligible under this protocol.

“Emission Factor” is defined in section 95102 of the Mandatory Reporting Regulation means a unique value for determining an amount of a GHG emitted for a given quantity of activity (e.g., metric tons of carbon dioxide emitted per barrel of fossil fuel burned).

“Enclosed Flare” means a flare that is situated in an enclosure for the purposes of safety and accurate measurement of gas combustion. For purposes of this protocol, an enclosed flare is considered a flare.

“End-use Management Option” means a method of methane destruction deemed either eligible or ineligible for the purpose crediting under this protocol.

“Executive Officer” means the Executive Officer of the California Air Resources Board, or his or her delegate.

“Flare” is defined in section 95102 of the Mandatory Reporting Regulation means a combustion device, whether at ground level or elevated, that uses an open flame to burn combustible gases with
combustion air provided by uncontrolled ambient air around the flame. For purposes of this protocol, an enclosed flare is considered a flare.

(18)(15) “Flooded Mine” or “Flooded Section” means a mine, or section thereof, that is flooded, (i.e., filled with water,) as a result of the turning off of pumps at time of abandonment and has no detectable freely venting methane emissions. Mines that either pump water due to regulatory or legal requirements or have detectable free standing water shall not be considered flooded provided that they still freely vent methane.

(19)(16) “Flow Meter” is defined in section 95102 of the Mandatory Reporting Regulation means a measurement device consisting of one or more individual components that is designed to measure the bulk fluid movement of liquid or gas through a piped system at a designated point. Bulk fluid movement can be measured with a variety of devices in units of mass flow or volume.

(20)(17) “Gas Treatment” means applying techniques to extracted mine gas such as dehydration, gas separation, and the removal of non-methane components to prepare the mine gas for an end-use management option, including pipeline injection.

(21)(18) “Gob” means the part of the mine from which the mineral and artificial supports have been removed and the roof allowed to fall in. Gob is also known as “Goaf.”

(22) “Greenhouse Gas Assessment Boundary” or “GHG Assessment Boundary” or “Offset Project Boundary” is defined by and includes all GHG emission sources, GHG sinks or GHG reservoirs that are affected by an offset project and under control of the Offset Project Operator or Authorized Project Designee. GHG emission sources, GHG sinks or GHG reservoirs not under control of the Offset Project Operator or Authorized Project Designee are not included in the offset project boundary.

(19) “Initial start-up period” means the period between qualifying destruction device installation and project commencement. After the installation of the
qualifying destruction device, the Offset Project Operator or Authorized Project Designee may run, tune, and test the system to ensure its operational quality. An initial start-up period must not exceed 9 months.

(23)(20) “Longwall” means a method of underground mining where a mechanical shearer is pulled back and forth across a coal face and loosened coal falls onto a conveyor for removal from the mine.

(21) “Mandatory Reporting Regulation” or “MRR” means ARB’s regulation establishing the Mandatory Reporting of Greenhouse Gas Emissions set forth in title 17, California Code of Regulations Chapter 1, Subchapter 10, article 2 (commencing with section 95100).

(24)(22) “Methane Drainage System” or “Drainage System” means a system that drains methane from coal or trona seams and/or surrounding rock strata and transports it to a common collection point. Methane drainage systems may comprise multiple methane sources.

(25)(23) “Methane Source” means a methane source type (i.e., ventilation shafts, pre-mining surface wells, pre-mining in-mine boreholes, post-mining gob wells, existing coal bed methane wells that would otherwise be shut-in and abandoned, abandoned wells that are re-activated, and converted dewatering wells) in the aggregate. In this protocol, “methane source” does not refer to any specific ventilation shaft, borehole, or well, but instead refers to all the ventilation shafts, boreholes, and wells of the same type collectively.

(26)(24) “Mine Gas” or “MG” means the untreated gas extracted from within a mine through a methane drainage system that often contains various levels of other components (e.g., nitrogen, oxygen, carbon dioxide, hydrogen sulfide, and nonmethane hydrocarbons NMHC, etc.) in addition to methane.

(27)(25) “Mine Methane” or “MM” means methane contained in mineral deposits and surrounding strata that is released as a result of mining operations; the methane portion of mine gas.
(26) “Mine Operator” means any owner, lessee, or other person who operates, controls, or supervises a coal or other mine or any independent contractor performing services or construction at such mine. For purposes of this protocol, the Mine Operator is the operating entity listed on the state well drilling permit, or a state operating permit for wells where no drilling permit is issued by the state.

(27) “Mine Safety and Health Administration” or “MSHA” means the U.S. federal agency that regulates mine health and safety.

(28) “Mining Activities” means working an area, or panel, of coal or trona that has been developed and equipped to facilitate mineral extraction and is shown on a mining plan.

(29) “Mountaintop Removal Mining” means a method of surface mining involving the removal of the covering layers of rock and soil at or near the top of a mountain to expose coal seams. Projects which occur at mines that employ mountaintop removal mining are not eligible under this protocol.

(30) “Natural Gas Seep” means an area where natural gas is emitted from overburden and outcrops that connect the mine to the atmosphere.

(31) “Natural Gas Pipeline” or “Pipeline” means a high pressure pipeline transporting saleable quality natural gas offsite to distribution, metering, or regulating stations or directly to customers.

(32) “Non-Qualifying Destruction Device” or “Non-Qualifying Device” means a destruction device that is either operational at the mine prior to offset project commencement, except as specified in section 2.4(b), or used to combust mine methane via an ineligible end-use management option per section 3.4. A destruction device that is operational at the mine prior to offset project commencement is considered a non-qualifying destruction device even if retrofitted thereafter. Methane destroyed by a non-qualifying device must be monitored for quantification of both the baseline and project scenarios.
“Offset Project Expansion” means the addition of a new methane source or new destruction device to an existing MMC project. A methane source is deemed new if it is either drilled after offset project commencement or connected to a destruction device after offset project commencement. A destruction device is deemed new if it becomes operational after offset project commencement. Under certain circumstances, described in Chapter 2, the addition of new methane sources or new destruction devices may qualify as a new MMC project or an offset project expansion. In those cases, an Offset Project Operator may choose how to define the addition. Offset project expansion, unlike the establishment of a new MMC project, will not result in a new offset project commencement date or crediting period. Offset project expansion, unlike the establishment of a new MMC project, allows the Offset Project Operator to submit a single annual Offset Project Data Report (OPDR) and undergo a single annual verification for the reporting period.

“Open-pit” means a method of surface mining where coal is exposed by removing the overlying rock. This is also known as open-cut or opencast mining.

“Oxidation” means a reaction in which the atoms in an element lose electrons and the valence of the element is correspondingly increased. An example of an oxidation reaction is the combustion of CH₄ in air to form CO₂ and water.

“Pre-mining In-mine Boreholes” means a borehole drilled into an unmined seam from within the mine to drain methane from the seam ahead of the advancement of mining. This is also known as horizontal pre-mining boreholes.

“Pre-mining Surface Wells” means a well drilled into an unmined seam from the surface to drain methane from the seam and surrounding strata, often months or years in advance of mining. This is also known as surface pre-mining boreholes, surface-to-seam boreholes, and surface-drilled directional boreholes.
“Post-mining Gob Well” or “Gob Well” means a well used to extract or vent methane from the gob. Gob wells may be drilled from the surface or within the mine.

“Project Activity” means a change in mine methane management that leads to a reduction in GHG emissions in comparison to the baseline management and GHG emissions.

“Qualifying Destruction Device” or “Qualifying Device” means a destruction device that was not operational at the mine prior to offset project commencement, except as specified in section 2.4(b), and that was not used to combust mine methane via an ineligible end-use management option per section 3.4. Methane destroyed by a non-qualifying device must be monitored for quantification of both the baseline and project scenarios.

“Room and Pillar” means a method of underground mining in which approximately half of the coal is left in place as “pillars” to support the roof of the active mining area while “rooms” of coal are extracted.

“Sealed,” in reference to an abandoned underground mine, means that existing wells and ventilation shafts are sealed, to some degree, with earthen or concrete seals inhibiting the flow of mine gas into the atmosphere. For purposes of determining baseline emissions under this protocol, the status of an abandoned underground mine (i.e., sealed or venting) must be obtained, if available, from a state agency with information on abandoned coal mines. If status is unavailable, an abandoned underground mine is considered sealed if any known entrance into the mine (e.g., portals, ventilation shafts, and methane drainage wells) has been sealed at any time prior to the project commencement date. The volume of methane trapped in the mine and the rate at which mine gas is emitted from the mine is dependent on the effectiveness of the sealing.

“Shut-in” means to close, temporarily, a well capable of production.
“Standard Conditions” or “Standard Temperature and Pressure” or “STP” means, for the purposes of this protocol, 60 degrees Fahrenheit and 14.7 pounds per square inch absolute (1 atm).

“Standard Cubic Foot” or “scf” means, for the purposes of this protocol, a measure of quantity of gas, equal to a cubic foot of volume at 60 degrees Fahrenheit and 14.7 pounds per square inch (1 atm) of pressure.

“Strata,” plural of stratum, means the layers of sedimentary rock surrounding a coal seam.

“Surface Mine Methane” or “SMM” means methane contained in mineral deposits and surrounding strata that is released as a result of surface mining operations.

“Thermal Energy” means the thermal output produced by a combustion source used directly as part of a manufacturing process, industrial/commercial process, or heating/cooling application, but not used to produce electricity.

“Trona” means a water-bearing sodium carbonate compound mineral that is mined and processed into soda ash or bicarbonate of soda.

“Uncertainty” is defined in section 95102 of the Mandatory Reporting Regulation means the degree to which data or a data system is deemed to be indefinite or unreliable.

“Uncertainty Deduction” means an adjustment applied to the emission reductions achieved by an abandoned mine methane recovery activity to account for uncertainty related to the use of emission rate decline curves. The purpose of an uncertainty deduction is to ensure that credited emission reductions remain conservative.

“Vented Emissions” means, for purposes of this protocol, intentional or designed releases of CH₄-containing natural gas or hydrocarbon gases through mine ventilation and methane drainage systems.
“Ventilation Air” or “VA” means the gas emitted from the ventilation system of a mine which originates across the mine workings and contains low concentrations of methane.

“Ventilation Air Methane” or “VAM” means methane contained in exhaust ventilation air of the ventilation system of a mine, which originates across the mine workings and is diluted to low concentrations by the circulation of outside air.

“Ventilation Air Methane Collection System” or “VAM Collection System” means a system that captures the ventilation air methane from the ventilation system.

“Ventilation Shaft” means a vertical passage used to move fresh air underground and/or to remove methane and other gases from an underground mine.

“Ventilation System” means a system of fans that provides a flow of air to underground workings of a mine for the purpose of sufficiently diluting and removing methane and other noxious gases.

“Venting,” in reference to an abandoned underground mine, means that existing wells and ventilation shafts are left unsealed, allowing air into the mine and methane to escape freely to the atmosphere. For purposes of determining baseline emissions under this protocol, the status of an abandoned underground mine, sealed or venting, must be obtained from a state agency with information on abandoned coal mines. If status is unavailable, an abandoned underground mine is considered venting if no known entrance into the mine (e.g., portals, ventilation shafts, and methane drainage wells) has been sealed at any time prior to the project commencement date.

“Well” means a well drilled for extraction of natural gas from a coal seam, surrounding strata, or mine.

For terms not defined in section 1.2(a), the definitions in section 95802 of the Cap-and-Trade Regulation (Regulation) apply.

For purposes of this protocol, the following acronyms apply:
“AAPG” means American Association of Petroleum Geologists.

“AB 32” means Assembly Bill 32, the Global Warming Solutions Act of 2006.

“acf” means actual cubic feet.

“acfm” means actual cubic feet per minute.

“AMM” means abandoned mine methane.

“APA” means Administrative Procedure Act.

“APD” means Authorized Project Designee.

“ARB” means the California Air Resources Board.

“ASTM” means the American Society of Testing and Materials.

“atm” means atmosphere in reference to a unit of pressure.

“BAU” means business-as-usual.

“Btu” means British thermal unit.

“CBM” means coal bed methane.

“CH₄” means methane.

“CO₂” means carbon dioxide.

“CO₂e” means carbon dioxide equivalent.

“d” means day.

“F” means Fahrenheit.

“GHG” means greenhouse gas.

“GWP” means global warming potential.

“h” means hour.

“kg” means kilogram.

“lb” means pound.

“m” means minute.

“MG” means mine gas.

“MM” means mine methane.

“MMBtu” means million British thermal units.

“MMC” means mine methane capture.

“MRR” means Mandatory Reporting Regulation; the Regulation for the Mandatory Reporting of Greenhouse Gas Emissions.
Chapter 2: Eligible Activities – Quantification Methodology
This protocol includes four mine methane capture activities designed to reduce GHG emissions that result from the mining process at active underground mines, active surface mines, and abandoned underground mines. The following types of mine methane capture activities are eligible:

§ 2.1. Active Underground Mine Ventilation Air Methane Activities.
This protocol applies to MMC projects that install a ventilation air methane (VAM) collection system and qualifying device to destroy the methane in VAM otherwise vented into the atmosphere through the return air shaft(s) as a result of underground coal or trona mining operations.

(a) Methane sources eligible for VAM activities include:
(1) Ventilation shaft systems; and

(2) Methane drainage systems from which mine gas is extracted and used to supplement VAM. Only the mine methane sent with ventilation air to a destruction device is eligible.

(b) In order to be considered a qualifying device for the purpose of this protocol, the device must not have been operational at the mine prior to offset project commencement.

(c) At active underground mines, an Offset Project Operator or Authorized Project Designee may operate both VAM and methane drainage activities as a single offset project all sharing the earliest commencement date. Alternatively, the Offset Project Operator or Authorized Project Designee may elect to operate separate offset projects for each activity with unique commencement dates.

(d) If a newly constructed ventilation shaft is connected to an existing or new qualifying destruction device after offset project commencement, the Offset Project Operator may either classify it as an offset project expansion or register the addition as a new MMC project.

(e) If an existing ventilation shaft that was not connected to a destruction device at time of offset project commencement is connected to an existing or new qualifying destruction device after offset project commencement, the Offset Project Operator may either classify it as an offset project expansion or register the addition as a new MMC project.

(f) If a new qualifying destruction device is added to a ventilation shaft currently connected to an existing qualifying destruction device this addition of the new qualifying destruction device is considered an offset project expansion.

(g) Ventilation air methane from any ventilation shaft connected to a non-qualifying destruction device at any point during the year prior to offset project commencement is not eligible for crediting.

§ 2.2. Active Underground Mine Methane Drainage Activities.
This protocol applies to MMC projects that install equipment to capture and destroy methane extracted through a methane drainage system that would otherwise be vented into the atmosphere as a result of underground coal or trona mining operations.
(a) Methane drainage systems must consist of one, or a combination of, the following methane sources that drain methane from the mineral seam, surrounding strata, or underground workings of the mine before, during, and/or after mining:

(1) Pre-mining surface wells;
(2) Pre-mining in-mine boreholes; and
(3) Post-mining gob wells.

(b) In order to be considered a qualifying device for the purpose of this protocol, a methane destruction device for an active underground mine methane drainage activity must not have been operational at the mine prior to offset project commencement and must represent an end-use management option other than natural gas pipeline injection.

(c) At active underground mines, an Offset Project Operator or Authorized Project Designee may operate both VAM and methane drainage activities as a single project all sharing the earliest commencement date. Alternatively, the Offset Project Operator or Authorized Project Designee may elect to operate separate projects for each activity with unique commencement dates.

(d) If a newly drilled well/borehole is connected to an existing or new qualifying destruction device after offset project commencement, the Offset Project Operator may either classify it as an offset project expansion or register the addition as a new MMC project.

(e) If an existing well/borehole that was not connected to a destruction device at time of offset project commencement is connected to an existing or new qualifying destruction device after offset project commencement, the Offset Project Operator may either classify it as an offset project expansion or register the addition as a new MMC project.

(f) If a new qualifying destruction device is connected to a well/borehole currently connected to an existing qualifying destruction device, this addition of the new qualifying destruction device is considered an offset project expansion.
(g) Mine methane from any well or borehole connected to a non-qualifying destruction device at any point during the year prior to offset project commencement is not eligible for crediting.

(h) To be eligible for crediting under this protocol, MMC projects at active underground mines with MMC projects must not:

1. Account for virgin coal bed methane (CBM) extracted from coal seams outside the extents of the mine according to the mine plan or from outside the methane source boundaries as described in section 3.5; or
2. Use CO₂, steam, or any other fluid/gas to enhance mine methane drainage.

§ 2.3. Active Surface Mine Methane Drainage Activities.
This protocol applies to MMC projects that install equipment to capture and destroy methane extracted through a methane drainage system that would otherwise be vented into the atmosphere as a result of surface coal or trona mining operations.

(a) Methane drainage systems must consist of one, or a combination, of the following methane sources that drain methane from the coal seam or surrounding strata before and/or during mining:

1. Pre-mining surface wells;
2. Pre-mining in-mine boreholes;
3. Existing coal bed methane (CBM) wells that would otherwise be shut-in and abandoned as a result of encroaching mining;
4. Abandoned wells that are re-activated; and
5. Converted dewatering wells.

(b) In order to be considered a qualifying device for the purpose of this protocol, a methane destruction device for an active surface mine methane drainage activity must not have been operational at the mine prior to offset project commencement.

(c) If a newly drilled well/borehole is connected to an existing or new qualifying destruction device after offset project commencement, the Offset Project Operator may either classify it as an offset project expansion or register the addition as a new MMC project.
(d) If an existing well/borehole that was not connected to a destruction device at time of offset project commencement is connected to an existing or new qualifying destruction device after offset project commencement, the Offset Project Operator may either classify it as an offset project expansion or register the addition as a new MMC project.

(e) If a new qualifying destruction device is connected to a well/borehole currently connected to an existing qualifying destruction device, this addition of the new qualifying destruction device is considered an offset project expansion.

(f) SMM from any well or borehole connected to a non-qualifying destruction device at any point during the year prior to offset project commencement is not eligible for crediting.

(g) To be eligible for crediting under this protocol, MMC projects at active surface mines must not:

1. Account for virgin CBM extracted from wells outside the extents of the mine according to the mine plan or from outside the methane source boundaries as described in section 3.5; or

2. Use CO₂, steam, or any other fluid/gas to enhance mine methane drainage; or

3. Occur at mines that employ mountaintop removal mining methods.

§2.4 Abandoned Underground Mine Methane Recovery Activities.
This protocol applies to MMC projects that install equipment to capture and destroy methane extracted through a methane drainage system that would otherwise be vented into the atmosphere as a result of previous underground coal mining operations.

(a) Methane drainage systems must consist of one, or a combination of, the following methane sources:

1. Pre-mining surface wells, drilled into the mine during active mining operations;

2. Pre-mining in-mine boreholes, drilled into the mine during active mining operations; or

3. Post-mining gob wells drilled into the mine during active mining operations; and
(2)(4) newly drilled surface wells drilled after the cessation of active mining operations.

(b) In order to be considered a qualifying device for the purpose of this protocol, a methane destruction device for an abandoned underground mine methane recovery activity must not be operating at the mine prior to offset project commencement unless the mine was previously engaged in active underground methane drainage activities and the methane destruction device was considered a qualifying destruction device for those activities.

(c) Abandoned underground mine methane recovery activities at multiple mines with multiple mine operators may report and verify together as a single project per the requirements of section 95977 of the Regulation if they meet the following criteria:

1. A single Offset Project Operator is identified and emission reductions achieved by the project will be credited to that Offset Project Operator.
2. The methane recovered from the mines is metered at a centralized point prior to being sent to a destruction device.
3. The Offset Project Operator meets all monitoring, reporting, and verification requirements in Chapters 6, 7, and 8.
4. Offset projects at all mines are in compliance with regulations per section 3.8. If any mine is found to be out of compliance, no emission reductions will be credited to the project for the reporting period even if achieved by one of the other mines found to be in compliance.

(d) In the event that there are vertically separated mines overlying and underlying other mines, wells completed in one mine can be used to capture methane in overlying or underlying mines provided the wells are within the maximum vertical extent of each mine per section 3.5(d)(4).

(e) If a newly drilled well/borehole is connected to an existing or new qualifying destruction device after offset project commencement, the Offset Project Operator may either classify it as an offset project expansion or register the addition as a new MMC project.
(f) If an existing well/borehole that was not connected to a destruction device at time of offset project commencement is connected to an existing or new qualifying destruction device after offset project commencement, the Offset Project Operator may either classify it as an offset project expansion or register the addition as a new MMC project.

(g) If a new qualifying destruction device is connected to a well/borehole currently connected to an existing qualifying destruction device, this addition of the new qualifying destruction device is considered an offset project expansion.

(h) AMM from any well or borehole connected to a non-qualifying destruction device at any point during the year prior to offset project commencement is not eligible for crediting.

(i) To be eligible for crediting under this protocol, MMC projects at abandoned underground mines must not:

 (1) Account for virgin coal bed methane (CBM) from wells outside the extents of the mine according to the final mine map(s) or from outside the methane source boundaries as described in section 3.5; or

 (2) Use CO₂, steam, or any other fluid/gas to enhance mine methane drainage; or

 (3) Occur at flooded mines or in flooded sections of mines.

Chapter 3. Eligibility
In addition to the offset project eligibility criteria and regulatory program requirements set forth in Subarticle 13 of the Cap-and-Trade Regulation (Regulation), mine methane capture offset projects must adhere to the eligibility requirements below.

§ 3.1. General Eligibility Requirements.
(a) Offset projects that use this protocol must:

 (1) Involve the installation and operation of a device, or set of devices, associated with the capture and destruction of mine methane;

 (2) Capture mine methane that would otherwise be emitted to the atmosphere; and
(3) Destroy the captured mine methane through an eligible end-use management option per section 3.4.

(b) Offset Project Operators or Authorized Project Designees that use this protocol must:

(1) Provide the listing information required by section 95975 of the Regulation and section 7.1;

(2) Monitor GHG emission sources within the GHG Assessment offset project boundary as delineated in Chapter 4 per the requirements of Chapter 6;

(3) Quantify GHG emission reductions per Chapter 5;

(4) Prepare and submit annual Offset Project Data Reports (OPDRs) for each reporting period that include the information requirements in section 7.2; and

(5) undergo required, independent offset verification services from an ARB-accredited offset verification body in accordance with section 95977 of the Regulation and Chapter 8.

§ 3.2. Location.

(a) Only projects located in the United States are eligible under this protocol.

(b) Offset projects situated on the following categories of land are only eligible under this protocol if they meet the requirements of this protocol and the Regulation, including the waiver of sovereign immunity requirements of section 95975(l) of the Regulation:

(1) Land that is owned by, or subject to an ownership or possessory interest of a Tribe;

(2) Land that is “Indian lands” of a Tribe, as defined by 25 U.S.C. §81(a)(1); or

(3) Land that is owned by any person, entity, or Tribe, within the external borders of such Indian lands.

(c) Projects must take place at either:

(1) An active underground or surface mine permitted for coal or trona mining by an appropriate state or federal agency and classified by Mine Safety...
and Health Administration (MSHA) as an active, intermittent, or temporarily idle mine; or
(2) An abandoned underground coal mine classified by MSHA as abandoned or abandoned and sealed temporarily idle or permanently abandoned by MSHA.

(d) Mines located on federal lands are eligible for implementation of MMC projects.

§ 3.3. Offset Project Operator or Authorized Project Designee.
(a) The Offset Project Operator or Authorized Project Designee is responsible for project listing, monitoring, reporting, and verification.
(b) The Offset Project Operator or Authorized Project Designee must submit the information required by Subarticle 13 of the Regulation and in Chapter 7.
(c) The Offset Project Operator must have legal authority to implement the offset project.
(d) The Offset Project Operator must be: a mine operator as defined in section 1.2(a)(28).
 (1) The mine operator as defined in section 1.2(a)(26); or
 (2) The entity that owns or leases the equipment used to capture or destroy mine methane.

§ 3.4. Additionality.
Offset projects must meet the additionality requirements set out in section 95973(a)(2) of the Regulation, in addition to the requirements in this protocol. Eligible offsets must be generated by projects that yield surplus GHG reductions that exceed any GHG reductions otherwise required by law or regulation or any GHG reduction that would otherwise occur in a conservative business-as-usual scenario. These requirements are assessed through the Legal Requirement Test in section 3.4.1 and the Performance Standard Evaluation in section 3.4.2.

§ 3.4.1. Legal Requirement Test.
(a) Emission reductions achieved by an MMC project must exceed those required by any law, regulation, or legally binding mandate at the time of offset project commencement as required in sections 95973(a)(2)(A) and 95975(n) of the Regulation.
(b) The following legal requirement test applies to all MMC projects:

(1) If no law, regulation, or legally binding mandate requiring the destruction of methane at the mine at which the project is located exists at the time of offset project commencement, all emission reductions resulting from the capture and destruction of mine methane are considered to not be legally required, and therefore eligible for crediting under this protocol.

(2) If any law, regulation, or legally binding mandate requiring the destruction of methane at the mine at which the project is located exists at the time of offset project commencement, only emission reductions resulting from the capture and destruction of mine methane that are in excess of what is required to comply with those laws, regulations, and/or legally binding mandates are eligible for crediting under this protocol.

§ 3.4.2. Performance Standard Evaluation.

(a) Emission reductions achieved by an MMC project must exceed those likely to occur in a conservative business-as-usual scenario.

(b) The performance standard evaluation is satisfied if the following requirements are met, depending on the basis of activity type:

(1) Active Underground Mine VAM Activities

(A) Destruction of VAM via any end-use management option automatically satisfies the performance standard evaluation because destruction of VAM is not common practice nor considered business-as-usual, and is therefore eligible for crediting under this protocol.

(2) Active Underground Mine Methane Drainage Activities

(A) Destruction of extracted mine methane via any end-use management option other than injection into a natural gas pipeline for off-site consumption except as described in 3.4.2(b)(2)(B) automatically satisfies the performance standard evaluation because it is not common practice nor considered business-as-usual, and is therefore eligible for crediting under this protocol.
Pipeline injection of mine methane extracted from methane drainage systems at active underground mines is common practice and considered business-as-usual, and therefore ineligible for crediting under this protocol.

(3) Active Surface Mine Methane Drainage Activities

(A) Destruction of extracted mine methane via any end-use management option automatically meets the performance standard evaluation because it is not common practice nor considered business-as-usual, and is therefore eligible for crediting under this protocol.

(4) Abandoned Underground Mine Methane Recovery Activities

(A) Destruction of extracted mine methane via any end-use management option except as described in 3.4.2(b)(4)(B) automatically meets the performance standard evaluation because it is not common practice nor considered business-as-usual, and is therefore eligible for crediting under this protocol.

(B) Pipeline injection of mine methane recovered at abandoned underground mines that also injected mine methane into a natural gas pipeline for off-site consumption while active is common practice and considered business-as-usual, and therefore ineligible for crediting under this protocol.

§3.5. Methane Source Boundaries.

(a) The methane destroyed for the purpose of reducing mine methane emissions under this protocol must be methane that would otherwise be emitted into the atmosphere during the normal course of mining activities.

(b) To ensure that virgin coal bed methane is excluded from the destroyed mine methane accounted for in this protocol, physical boundaries must be placed on the source of the methane.

(c) All methane from a mine’s ventilation and drainage systems must be collected from within the mine extents according to an up-to-date mine plan.

(d) Additional physical boundaries on the basis of activity type are as follows:
(1) Active underground mine ventilation air methane activities may account for:
 (A) All destroyed methane contained in VAM collected from a mine ventilation system; and
 (B) All destroyed mine methane contained in mine gas extracted from a methane drainage system used to supplement VAM.

(2) Active underground mine methane drainage activities may account for:
 (A) Destroyed mine methane contained in mine gas extracted from strata up to 150 meters above and 50 meters below a mined seam through pre-mining surface wells and pre-mining in-mine boreholes; and
 (B) All destroyed mine methane contained in mine gas extracted through gob wells.

(3) Active surface mine methane drainage activities may account for destroyed surface mine methane contained in mine gas extracted from all strata above and up to 50 meters below a mined seam through pre-mining surface wells, pre-mining in-mine boreholes, existing coal bed methane wells that would otherwise be shut-in and abandoned as a result of encroaching mining, abandoned wells that are re-activated, and converted dewatering wells.

(4) Abandoned underground mine methane recovery activities may account for:
 (A) Destroyed abandoned mine methane contained in mine gas extracted from strata up to 150 meters above and 50 meters below a mined seam through pre-mining surface wells and pre-mining in-mine boreholes drilled during active mining operations;
 (B) Destroyed abandoned mine methane contained in mine gas extracted from strata up to 150 meters above and 50 meters below a mine seam through newly drilled surface wells; and
(C) Destroyed abandoned mine methane contained in mine gas extracted from strata up to 150 meters above and 50 meters below a mined seam through existing post-mining gob wells.

§ 3.6. Offset Project Commencement.

(a) For this protocol, offset project commencement is defined as the date at which the offset project’s mine methane capture and destruction equipment becomes operational. Equipment is considered operational on the date at which the system begins capturing and destroying methane gas upon completion of an initial start-up period.

(b) Per section 95973(a)(2)(B) of the Regulation, compliance offset projects must have an offset project commencement date after December 31, 2006.

§ 3.7. Project Crediting Period.

The crediting period for this protocol is ten years reporting periods.

§ 3.8. Regulatory Compliance.

(a) An offset project must meet the regulatory compliance requirements set forth in section 95973(b) of the Regulation.

 a) An Offset Project Operator or Authorized Project Designee must fulfill all applicable local, regional, and national requirements on environmental impact assessments that apply based on the offset project.

 (b) Offset projects must fulfill all local, regional, and national environmental and health and safety laws and regulations that directly apply to the offset project.

 (c) The project is in regulatory compliance if the project activities were not subject to enforcement action by a regulatory oversight body during the Reporting Period.

 (d) Offset projects are not eligible to receive ARB or registry offset credits for GHG reductions or GHG removal enhancements for the entire Reporting Period if the offset project is not in compliance with regulatory requirements directly applicable to the offset project during the Reporting Period.
Chapter 4. GHG Assessment Offset Project Boundary – Quantification Methodology
The greenhouse gas assessment boundary, or offset project boundary, delineates the GHG emission sources, sinks, and reservoirs (SSRs) that must be included or excluded when quantifying the net change in emissions associated with the installation and operation of a device, or set of devices, associated with the capture and destruction of mine methane. The following GHG assessment offset project boundaries apply to all MMC projects on the basis of activity type:

§ 4.1. Active Underground Mine VAM Activities.
(a) Figure 4.1 illustrates the GHG assessment offset project boundary for active underground mine VAM activities, indicating which SSRs are included or excluded from the offset project boundary.

(1) All SSRs within the bold line are included and must be accounted for under this protocol.

(2) SSRs in shaded boxes are relevant to the baseline and project emissions.

(3) SSRs in unshaded boxes are relevant only to the project emissions.
Figure 4.1. Illustration of the greenhouse gas assessment offset project boundary for active underground mine VAM activities.

- SSR 1: Active underground mine VAM emissions
- SSR 2: Ventilation system
- SSR 3: VAM collection and destruction equipment
- SSR 4: VAM destruction
- SSR 5: Construction and equipment installation
(b) Table 4.1 lists the SSRs for active underground mine VAM activities, indicating which gases are included or excluded from the offset project boundary.

Table 4.1. List of the greenhouse gas sinks, sources, and reservoirs for active underground mine VAM activities.

<table>
<thead>
<tr>
<th>SSR</th>
<th>Description</th>
<th>GHG</th>
<th>Baseline (B) or Project (P)</th>
<th>Included/ Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Emissions from the venting of VAM through mine ventilation system</td>
<td>CH₄</td>
<td>B, P</td>
<td>Included</td>
</tr>
<tr>
<td>2</td>
<td>Emissions resulting from energy consumed to operate mine ventilation system</td>
<td>CO₂</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH₄</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N₂O</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td>3</td>
<td>Emissions resulting from energy consumed to operate VAM collection system/ destruction device additional equipment used to capture or destroy VAM</td>
<td>CO₂</td>
<td>P</td>
<td>Included</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH₄</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N₂O</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td>4</td>
<td>Emissions resulting from VAM destruction</td>
<td>CO₂</td>
<td>B, P</td>
<td>Included</td>
</tr>
<tr>
<td></td>
<td>Emissions of uncombusted methane</td>
<td>CH₄</td>
<td>B, P</td>
<td>Included</td>
</tr>
<tr>
<td>5</td>
<td>Emissions from construction and/or installation of new equipment</td>
<td>CO₂</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH₄</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N₂O</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td></td>
<td>Fugitive emissions from construction</td>
<td>CH₄</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
</tbody>
</table>

§4.2. Active Underground Mine Methane Drainage Activities.

(a) Figure 4.2 illustrates the GHG assessment offset project boundary for active underground mine methane drainage activities, indicating which SSRs are included or excluded from the offset project boundary.

(1) All SSRs within the bold line are included and must be accounted for under this protocol.

(2) SSRs in shaded boxes are relevant to the baseline and project emissions.

(3) SSRs in unshaded boxes are relevant only to the project emissions.
Figure 4.2. Illustration of the greenhouse gas assessment offset project boundary for active underground mine methane drainage activities.
(b) Table 4.2 lists the identified SSRs for active underground mine methane drainage activities, indicating which gases are included or excluded from the offset project boundary.

Table 4.2. List of identified greenhouse gas sinks, sources, and reservoirs for active underground mine methane drainage activities.

<table>
<thead>
<tr>
<th>SSR</th>
<th>Description</th>
<th>GHG</th>
<th>Relevant to Baseline (B) or Project (P)</th>
<th>Included/Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Emissions from the venting of mine methane extracted through methane drainage system</td>
<td>CH₄</td>
<td>B, P</td>
<td>Included</td>
</tr>
<tr>
<td>2</td>
<td>Emissions resulting from energy consumed to operate additional equipment used to capture, or treat, or destroy drained mine gas</td>
<td>CO₂</td>
<td>B</td>
<td>Included</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH₄</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N₂O</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td></td>
<td>Fugitive emissions from operation of additional equipment used to capture, or treat, or destroy drained mine gas</td>
<td>CH₄</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td>3</td>
<td>Emissions resulting from additional energy consumed to transport mine gas to treatment or destruction equipment</td>
<td>CO₂</td>
<td>B, P</td>
<td>Included</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH₄</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N₂O</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td></td>
<td>Fugitive emissions from the on-site transportation of mine gas</td>
<td>CH₄</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td>4</td>
<td>Emissions resulting from energy consumed to operate additional equipment used to liquefy, compress, or store methane for vehicle use</td>
<td>CO₂</td>
<td>B, P</td>
<td>Included</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH₄</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N₂O</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td></td>
<td>Fugitive emissions from operation of additional equipment used to liquefy, compress, or store methane for vehicle use</td>
<td>CH₄</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td>5</td>
<td>Emissions resulting from methane combustion during vehicle operation</td>
<td>CO₂</td>
<td>B, P</td>
<td>Included</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N₂O</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td></td>
<td>Emissions resulting from incomplete methane combustion during vehicle operation</td>
<td>CH₄</td>
<td>B, P</td>
<td>Included</td>
</tr>
<tr>
<td>6</td>
<td>Emissions resulting from methane combustion during on-site electricity generation</td>
<td>CO₂</td>
<td>B, P</td>
<td>Included</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N₂O</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td></td>
<td>Emissions resulting from incomplete methane combustion during on-site electricity generation</td>
<td>CH₄</td>
<td>B, P</td>
<td>Included</td>
</tr>
</tbody>
</table>
§ 4.3. Active Surface Mine Methane Drainage Activities.

(a) Figure 4.3 illustrates the GHG assessment offset project boundary for active surface mine methane drainage activities, indicating which SSRs are included or excluded from the offset project boundary.

1. All SSRs within the bold line are included and must be accounted for under this protocol.
2. SSRs in shaded boxes are relevant to the baseline and project emissions.
3. SSRs in unshaded boxes are relevant only to the project emissions.

<table>
<thead>
<tr>
<th>SSR Description</th>
<th>Emission Type</th>
<th>Baseline</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions resulting from methane combustion during on-site thermal energy generation</td>
<td>CO$_2$</td>
<td>B, P</td>
<td>Included</td>
</tr>
<tr>
<td></td>
<td>N$_2$O</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td>Emissions resulting from incomplete methane combustion during on-site thermal energy generation</td>
<td>CH$_4$</td>
<td>B, P</td>
<td>Included</td>
</tr>
<tr>
<td>Emissions resulting from methane combustion during on-site flaring</td>
<td>CO$_2$</td>
<td>B, P</td>
<td>Included</td>
</tr>
<tr>
<td></td>
<td>N$_2$O</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td>Emissions resulting from incomplete methane combustion during flaring</td>
<td>CH$_4$</td>
<td>B, P</td>
<td>Included</td>
</tr>
<tr>
<td>Emissions resulting from methane combustion resulting from pipeline injection</td>
<td>CO$_2$</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td></td>
<td>N$_2$O</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td>Emissions resulting from the incomplete methane combustion resulting from pipeline injection</td>
<td>CH$_4$</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td>Emissions from well drilling and gas well completion</td>
<td>CO$_2$</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td></td>
<td>CH$_4$</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td></td>
<td>N$_2$O</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td>Fugitive emissions from well drilling and gas well completion</td>
<td>CH$_4$</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td>Emission reductions resulting from the displacement of fossil fuels or electricity</td>
<td>CO$_2$</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td></td>
<td>CH$_4$</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td></td>
<td>N$_2$O</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
</tbody>
</table>
Figure 4.3. Illustration of the greenhouse gas assessment offset project boundary for active surface mine methane drainage activities.

(b) Table 4.3 lists the SSRs for active surface mine methane drainage activities, indicating which gases are included or excluded from the offset project boundary.

Table 4.3. List of the greenhouse gas sinks, sources, and reservoirs for active surface mine methane drainage activities.

<table>
<thead>
<tr>
<th>SSR</th>
<th>Description</th>
<th>GHG</th>
<th>Relevant to Baseline (B) or Project (P)</th>
<th>Included/ Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Emissions from the venting of mine methane during the mining process</td>
<td>CH₄</td>
<td>B, P</td>
<td>Included</td>
</tr>
<tr>
<td>2</td>
<td>Emissions resulting from energy consumed to operate additional equipment used to capture, or treat, or destroy drained mine gas</td>
<td>CO₂, CH₄</td>
<td>P, n/a</td>
<td>Included, Excluded</td>
</tr>
<tr>
<td></td>
<td>Fugitive emissions from operation of additional equipment used to capture, or treat, or destroy drained mine gas</td>
<td>N₂O, CH₄</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td>3</td>
<td>Emissions resulting from additional energy consumed to transport mine gas to treatment or destruction equipment</td>
<td>CO₂, CH₄, N₂O</td>
<td>P, n/a</td>
<td>Included, Excluded</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Emissions from</td>
<td>N2O Status</td>
<td>CH4 Status</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>----------------</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>4</td>
<td>Emissions resulting from energy consumed to operate additional equipment used to liquefy, compress, or store methane for vehicle use.</td>
<td>CO2</td>
<td>P</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Fugitive emissions from operation of additional equipment used to liquefy, compress, or store methane for vehicle use.</td>
<td>CH4</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td>5</td>
<td>Emissions resulting from methane combustion during vehicle operation</td>
<td>CO2</td>
<td>B, P</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Emissions resulting from incomplete methane combustion during vehicle operation</td>
<td>N2O, CH4</td>
<td>Excluded</td>
<td>Excluded</td>
</tr>
<tr>
<td>6</td>
<td>Emissions resulting from methane combustion during on-site electricity generation</td>
<td>CO2, N2O</td>
<td>B, P</td>
<td>Excluded</td>
</tr>
<tr>
<td></td>
<td>Emissions resulting from incomplete methane combustion during on-site electricity generation</td>
<td>CH4</td>
<td>B, P</td>
<td>Excluded</td>
</tr>
<tr>
<td>7</td>
<td>Emissions resulting from methane combustion during on-site thermal energy generation</td>
<td>CO2, N2O</td>
<td>B, P</td>
<td>Excluded</td>
</tr>
<tr>
<td></td>
<td>Emissions resulting from incomplete methane combustion during on-site thermal energy generation</td>
<td>CH4</td>
<td>B, P</td>
<td>Excluded</td>
</tr>
<tr>
<td>8</td>
<td>Emissions resulting from methane combustion during on-site flaring</td>
<td>CO2</td>
<td>B, P</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Emissions resulting from incomplete methane combustion during flaring</td>
<td>N2O, CH4</td>
<td>Excluded</td>
<td>Excluded</td>
</tr>
<tr>
<td>9</td>
<td>Emissions resulting from methane combustion resulting from pipeline injection</td>
<td>CO2, N2O</td>
<td>B, P</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Emissions resulting from the incomplete methane combustion resulting from pipeline injection</td>
<td>CH4</td>
<td>B, P</td>
<td>Excluded</td>
</tr>
<tr>
<td>10</td>
<td>Emissions from additional well drilling and well gas completion</td>
<td>CO2</td>
<td>P</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Fugitive emissions from additional well drilling and gas well completion</td>
<td>CH4</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td>11</td>
<td>Emission reductions resulting from the displacement of fossil fuels or electricity</td>
<td>CO2</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH4</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N2O</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
</tbody>
</table>

(a) Figure 4.4 illustrates the GHG assessment offset project boundary for abandoned underground mine methane recovery activities, indicating which SSRs are included or excluded from the offset project boundary.

(1) All SSRs within the bold line are included and must be accounted for under this protocol.

(2) SSRs in shaded boxes are relevant to the baseline and project emissions.

(3) SSRs in unshaded boxes are relevant only to the project emissions.

Figure 4.4. Illustration of the greenhouse gas assessment offset project boundary for abandoned underground mine methane recovery activities.

(b) Table 4.4 lists the SSRs for abandoned underground mine methane recovery activities, indicating which gases are included or excluded from the offset project boundary.
Table 4.4. List of the greenhouse gas sinks, sources, and reservoirs for abandoned underground mine methane recovery activities.

<table>
<thead>
<tr>
<th>SSR</th>
<th>Description</th>
<th>GHG</th>
<th>Relevant to Baseline (B) or Project (P)</th>
<th>Included/Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Emissions of mine methane liberated after the conclusion of mining operations</td>
<td>CH$_4$</td>
<td>B, P</td>
<td>Included</td>
</tr>
<tr>
<td>2</td>
<td>Emissions resulting from energy consumed to operate additional equipment used to capture, treat, or destroy drained mine gas</td>
<td>CO$_2$</td>
<td>P</td>
<td>Included</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH$_4$</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td></td>
<td>Fugitive emissions from operation of additional equipment used to capture, treat, or destroy drained mine gas</td>
<td>N$_2$O</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td>3</td>
<td>Emissions resulting from additional energy consumed to transport mine gas to treatment or destruction equipment</td>
<td>CO$_2$</td>
<td>P</td>
<td>Included</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH$_4$</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td></td>
<td>Fugitive emissions from the on-site transportation of mine gas</td>
<td>N$_2$O</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td>4</td>
<td>Emissions resulting from energy consumed to operate equipment used to liquefy, compress, or store methane for vehicle use</td>
<td>CO$_2$</td>
<td>P</td>
<td>Included</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH$_4$</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td></td>
<td>Fugitive emissions from operation of equipment used to liquefy, compress, or store methane for vehicle use</td>
<td>N$_2$O</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td>5</td>
<td>Emissions resulting from methane combustion during vehicle operation</td>
<td>CO$_2$</td>
<td>B, P</td>
<td>Included</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N$_2$O</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td>6</td>
<td>Emissions resulting from methane combustion during on-site electricity generation</td>
<td>CO$_2$</td>
<td>B, P</td>
<td>Included</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N$_2$O</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td>7</td>
<td>Emissions resulting from methane combustion during on-site thermal energy generation</td>
<td>CO$_2$</td>
<td>B, P</td>
<td>Included</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N$_2$O</td>
<td>n/a</td>
<td>Excluded</td>
</tr>
<tr>
<td>8</td>
<td>Emissions resulting from methane combustion during on-site electricity generation</td>
<td>CH$_4$</td>
<td>B, P</td>
<td>Included</td>
</tr>
</tbody>
</table>
Chapter 5. Quantifying GHG Emission Reductions – Quantification Methodology

(a) GHG emission reductions from an MMC project are quantified by comparing actual project emissions to project baseline emissions at the mine.

(b) Offset Project Operators and Authorized Project Designees must use the activity type-specific calculation methods provided in this protocol to determine baseline and project GHG emissions.

(c) GHG emission reductions must be quantified on at least an annual basis over a consecutive twelve month period. The length of time over which GHG emission reductions are quantified is called the "reporting period."

(d) Measurements used to quantify GHG emission reductions must be corrected using flow rates and methane densities adjusted to standard conditions of 60°F and 14.7 pounds per square inch (1 atm).

(e) Depending on the methane analyzer technology used, methane concentration readings may or may not need to be adjusted for temperature and pressure. If readings require adjustment, then such adjustments must be performed.

(f) Global warming potential values must be determined consistent with the definition of Carbon Dioxide Equivalent in MRR section 95102(a).
§ 5.1. Active Underground Mine Ventilation Air Methane Activities.
(a) GHG emission reductions for a reporting period (ER) must be quantified by subtracting the project emissions for that reporting period (PE) from the baseline emissions for that reporting period (BE) using Equation 5.1.

Equation 5.1: GHG Emission Reductions

\[ER = BE - PE \]

Where,

\(ER \) = Emission reductions achieved by the project during the reporting period (tMT CO\(_2\)e)

\(BE \) = Baseline emissions during the reporting period (tMT CO\(_2\)e)

\(PE \) = Project emissions during the reporting period (tMT CO\(_2\)e)

§ 5.1.1. Quantifying Baseline Emissions
(a) Baseline emissions for a reporting period (BE) must be estimated by summing the baseline emissions for all SSRs identified as included in the baseline in Table 4.1 and by using Equation 5.2.

Equation 5.2: Baseline Emissions

\[BE = BE_{MD} + BE_{MR} \]

Where,

\(BE \) = Baseline emissions during the reporting period (tMT CO\(_2\)e)

\(BE_{MD} \) = Baseline emissions from destruction of methane during the reporting period (tMT CO\(_2\)e)

\(BE_{MR} \) = Baseline emissions from release of methane into the atmosphere avoided by the project during the reporting period (tMT CO\(_2\)e)

(b) Baseline emissions from the destruction of methane (\(BE_{MD} \)) must be quantified using Equations 5.3 and 5.4.
(c) \(BE_{MD} \) must include the estimated CO\(_2\) emissions from the destruction of VAM by non-qualifying devices.
(d) The volume or mass of VAM that would have been sent to a non-qualifying device for destruction during the reporting period in the baseline must be the determined by calculating and comparing:
(1) The volume or mass of VAM sent to non-qualifying destruction devices during the reporting period, adjusted for temperature and pressure using Equation 5.11, if applicable; and

(2) The volume or mass of VAM sent to non-qualifying destruction devices during the three-year period prior to offset project commencement (or during the length of time the devices are operational, if less than three years), adjusted for temperature and pressure using Equation 5.11, if applicable, and averaged according to the length of the reporting period.

(3) The volume or mass of VAM sent to non-qualifying devices during the time period a law, regulation, or legally binding mandate, in place for less than three years prior to offset project commencement, was in effect, adjusted for temperature and pressure using Equation 5.11, if applicable, and averaged according to the length of the reporting period.

(e) The largest of the three above quantities must be used for \(VAM_{B,i} \).

(f) If using a quantity from calculation (2) or (3) above and the project does not have data on the methane concentration of ventilation air in ventilation air exhaust to use in Equations 5.15, the highest single-hour average concentration of ventilation air in ventilation air exhaust during the reporting period must be used in its place.

(g) If using a quantity from calculation (2) or (3) above and the project does not have data on the methane concentration of ventilation air sent to destruction device to use in Equations 5.16, the highest single-hour average methane concentration of ventilation air sent to destruction device must be used in its place.

(h) For the purpose of baseline quantification, only non-qualifying devices that were operating during the year prior to offset project commencement should be taken into account.

(i) If there is no destruction of methane in the baseline, then \(BEMD = 0 \).

\[
\text{Equation 5.3: Baseline Emissions from Destruction of Methane}
\]

\[
BEMD = \sum_i MD_{B,i} \times CEF_{CH4}
\]

Where,
\[BE_{MD} = \text{Baseline emissions from destruction of methane during the reporting period (tMT CO}_2\text{e)} \]

\[i = \text{Use of methane (oxidation or alternative combustion end-use) by non-qualifying destruction devices} \]

\[MD_{B,i} = \text{Methane that would have been destroyed through use } i \text{ by non-qualifying devices during the reporting period (tMT CH}_4\text{)} \]

\[CEF_{CH4} = \text{CO}_2\text{ emission factor for combusted methane (2.752.744 tMT CO}_2\text{e/ tMT CH}_4\text{)} \]

(e) The amount of methane that would have been destroyed by non-qualifying destruction devices \((MD_{B,i})\) must be quantified using equation 5.4.

(f) For the purpose of baseline quantification, only non-qualifying destruction devices that were operating during the year prior to offset project commencement should be taken into account.

(g) The volume or mass of VA that would have been sent to a non-qualifying device for destruction during the reporting period in the baseline must be determined by calculating and comparing:

1. The volume or mass of VA sent to non-qualifying destruction devices during the current reporting period, adjusted for temperature and pressure using equation 5.11, if applicable;

2. The volume or mass of VA sent to non-qualifying destruction devices during the three-year period prior to offset project commencement (or during the length of time the devices are operational, if less than three years), adjusted for temperature and pressure using equation 5.11, if applicable, and averaged according to the length of the reporting period; and

3. The volume or mass of VA sent to non-qualifying destruction devices during the time period a law, regulation, or legally binding mandate, in place for less than three years prior to offset project commencement, was in effect, adjusted for temperature and pressure using equation 5.11, if applicable, and averaged according to the length of the reporting period.

(h) The largest of the three quantities determined in sections 5.1.1(g)(1)-(3) must be used for the volume of ventilation air that would have been sent to a non-
 qualifying device for destruction through use i during the reporting period in the baseline scenario \((VAB,i) \) in equations 5.4 and 5.5.

(i) If using a quantity for \(VAB,i \) determined by section 5.1.1(g)(1), data for ventilation air flow rate \((VAFlow,i) \), methane concentration of ventilation air \((CCH4,i) \), methane concentration of exhaust gas \((CCH4,exhaust,i) \), average flow rate of cooling air \((CAflow,i,y) \), hours of destruction device operation \((y) \), volume of mine gas sent for destruction with ventilation air \((MGSUPP,i) \), and methane concentration of mine gas \((CCH4,MG) \) must be monitored for the non-qualifying destruction devices and used in equations 5.4 and 5.5.

(j) If using a quantity for \(VAB,i \) determined by section 5.1.1(g)(2) or 5.1.1(g)(3), historical data for ventilation air flow rate \((VAFlow,i) \), methane concentration of ventilation air \((CCH4,i) \), methane concentration of exhaust gas \((CCH4,exhaust,i) \), average flow rate of cooling air \((CAflow,i,y) \), hours of operation \((y) \), volume of mine gas sent for destruction with ventilation air \((MGSUPP,i) \), and methane concentration of mine gas \((CCH4,MG) \) must be used in equations 5.4 and 5.5, if available.

(k) If using a quantity for \(VAB,i \) determined by section 5.1.1(g)(2) or 5.1.1(g)(3), and historical data for ventilation air flow rate \((VAFlow,i) \), methane concentration of ventilation air \((CCH4,i) \), methane concentration of exhaust gas \((CCH4,exhaust,i) \), average flow rate of cooling air \((CAflow,i,y) \), and mine gas methane concentration \((CCH4,MG) \) are not available, the highest single-hour average flow rates and methane concentrations during the reporting period must be used in place of historical data.

(l) If using a quantity for \(VAB,i \) determined by section 5.1.1(g)(2) or 5.1.1(g)(3), and historical data for hours of operation \((y) \) is not available, the highest number of operational hours for any qualifying or non-qualifying destruction device during the reporting period must be used in place of historical data.

(m) If using a quantity for \(VAB,i \) determined by section 5.1.1(g)(2) or 5.1.1(g)(3), and historical data for volume of mine gas sent for destruction with ventilation air \((MGSUPP,i) \) is not available, the largest volume of mine gas sent to any qualifying or non-qualifying destruction device during the reporting period must be used in place of historical data.
(n) If cooling air was added to the destruction device after the point of metering for VA, this must be accounted for with term \(CA_{\text{flow},i,y} \) in equation 5.4. If no cooling air was added, then \(CA_{\text{flow},i,y} = 0 \).

(o) If the flow rate of cooling air was metered, then the average metered data flow rate must be used for the flow rate. If the flow rate was not metered, the maximum capacity of the cooling air intake system must be used for the flow rate.

Equation 5.4: Methane Destroyed in Baseline

\[
MD_{B,i} = \sum_i (VAM_{B,i} \times C_{CH4} \times 0.0423 \times 0.000454 - BE_{NO_i})
\]

Where,

\(MD_{B,i} \) = Methane that would have been destroyed through use \(i \) by non-qualifying devices during the reporting period; calculated separately for each destruction device (tMT CH\(_4\))

\(i \) = Use of methane (oxidation or alternative end-use) by non-qualifying destruction devices

\(VAM_{B,i} \) = Volume of VAM ventilation air that would have been sent to a non-qualifying devices for destruction through use \(i \) during the reporting period in the baseline scenario (scf)

\(C_{CH4} \) = Weighted average of measured methane concentration of captured ventilation air that would have been sent to non-qualifying destruction devices during the reporting period; calculated separately for each device (scf CH\(_4\)/scf)

0.0423 = Standard density of methane (lb CH\(_4\)/scf CH\(_4\))

0.000454 = tMT CH\(_4\)/lb CH\(_4\))

\(BE_{NO_i} \) = Baseline emissions of non-oxidized methane that would have been emitted as a result of incomplete oxidation of the VAM-ventilation air stream during the reporting period (tMT CH\(_4\))

With:

\[
C_{CH4} = \frac{\sum_t VAM_{flow,t} \times C_{CH4,t}}{\sum_t VAM_{flow,t}}
\]

\[
C_{CH4} = \frac{\sum_t (VA_{flow,t} \times C_{CH4,t})}{\sum_t VA_{flow,t}}
\]

Where,
\[C_{CH4,t} = \text{Hourly average methane concentration of ventilation air sent to a destruction device (scf CH}_4/\text{scf)} \]

\[VAM_{flow,t} = \text{Hourly average flow rate of ventilation air sent to a destruction device (scf/hour)}(\text{scfm}) \]

And:

\[BE_{NO} = VAM_{FLOW,y} \times TIME_y \times C_{CH4,exhaust,i} \times 0.0423 \times 0.000454 \]

\[BE_{NO,i} = (VA_B_i + \sum_y CA_{flow,i,y} \times 60) \times C_{CH4,exhaust,i} \times 0.0423 \times 0.000454 \]

Where,

\[VAM_{FLOW,y} = \text{Corrected average flow rate or total volume of ventilation air that would be entering the non qualifying destruction device during period y, adjusted to 60°F and 1 atm (scf/unit of time)} \]

\[TIME_y = \text{Time during which non qualifying destruction device would be operational during period y (m)} \]

\[y = \text{Hours during which the destruction device would have been operational during reporting period (h)} \]

\[CA_{flow,i,y} = \text{Hourly average flow rate of cooling air that would have been sent to a destruction device after the metering point of the ventilation air stream during period y (scfm)} \]

\[60 = \text{Number of minutes in an hour} \]

\[C_{CH4,exhaust,i} = \text{Weighted average of measured methane concentration in the ventilation air exhaust gas that would have been emitted from the destruction device during the reporting period (scf CH}_4/\text{scf)} \]

With:

\[C_{CH4,exhaust} = \frac{\sum_t VAM_{flow,t} \times C_{CH4,exhaust,t}}{\sum_t VAM_{flow,t}} \]

\[C_{CH4,exhaust,i} = \frac{\sum_y \left(\frac{VA_B_i + \sum_y CA_{flow,i,y} \times 60}{y} \times C_{CH4,exhaust,y} \right)}{\sum_y \left(\frac{VA_B_i}{y} + CA_{flow,i,y} \times 60 \right)} \]

Where,

\[C_{CH4,exhaust,y} = \text{Hourly average methane concentration of ventilation air in ventilation air exhaust gas (scf CH}_4/\text{scf)} \]

\[VAM_{flow,t} = \text{Hourly average flow of ventilation air sent to destruction device (scf/hour)} \]
Methane concentrations and flow rates must be recorded every two minutes with averages calculated at least hourly. If the Offset Project Operator or Authorized Project Designee monitors and records data at a higher frequency, this data may be used within appropriate variables of the above equations to reflect the higher frequency of data collection.

If a thermal-mass flow meter is used to monitor gas flow instead of a volumetric flow meter, the volume and density terms must be replaced by the monitored mass value and the methane concentration must be in mass percent.

(j)(p) Baseline emissions from the release of methane (BE_{MR}) must be quantified using Equation 5.5.

(k)(q) BE_{MR} must account for the total amount of methane actually destroyed by all qualifying and non-qualifying devices during the reporting period.

(l)(r) VAM project activities may supplement VAM with mine gas (MG) extracted from a methane drainage system to either increase or help balance the methane concentration of methane flowing into the destruction device. If MG is used to supplement VAM, the MG destroyed by the project during the reporting period must be accounted for using Equation 5.5, either as MG_{SUPP,i} if VAM flow and mine methane flow are monitored separately, or through VAM_{P,i} if only the resulting enriched flow is monitored.

(m)(s) Methane that is still vented in the project scenario is not accounted for in the project emissions or baseline emissions since it is vented in both scenarios.

Equation 5.5: Baseline Emissions from Release of Methane

\[
BE_{MR} = \sum_i [(VAM_{P,i} \times C_{CH4} - VAM_{B,i} \times C_{CH4}) + MG_{SUPP,i} \times C_{CH4,MG}] \times 0.0423 \times 0.000454 \times GWP_{CH4}
\]

Where,

- \(BE_{MR} \) = Baseline emissions from release of methane into the atmosphere avoided by the project during the reporting period (tMT CO₂e)
- \(VAM_{P,i} \) = Volume of ventilation air sent to qualifying and non-qualifying devices for destruction through use i during the project during the reporting period (scf)
- \(VAM_{B,i} \) = Volume of ventilation air that would have sent to non-qualifying devices for destruction through use i during the reporting period in the baseline scenario (scf)
\[C_{CH4} = \text{Weighted average of measured methane concentration of captured ventilation air sent to qualifying and non-qualifying destruction devices during the reporting period; calculated separately for each device (scf CH}_4/\text{scf)} \]

\[MG_{SUPP,i} = \text{Volume of mine methane gas that would have been extracted from a methane drainage system and sent with ventilation air to qualifying and non-qualifying devices for destruction with VAM during the reporting period (scf)} \]

\[C_{CH4,MG} = \text{Weighted average of measured methane concentration of captured mine gas that would have been sent with ventilation air to non-qualifying devices for destruction during the reporting period (scf CH}_4/\text{scf)} \]

0.0423 = \text{Standard Density of methane (lb CH}_4/\text{scf CH}_4) \]

0.000454 = \text{tMT CH}_4/\text{lb CH}_4 \]

\[GWPC_{CH4} = \text{Global warming potential of methane (tMT CO}_2e/\text{tMT CH}_4) \]

With:

\[C_{CH4} = \frac{\sum_t VAM_{flow,t} \times C_{CH4,t}}{\sum_t VAM_{flow,t}} \]

\[C_{CH4} = \frac{\sum_t (VA_{flow,t} \times C_{CH4,t})}{\sum_t VA_{flow,t}} \]

\[\text{Where,} \]
\[C_{CH4,t} = \text{Hourly average methane concentration of ventilation air sent to a destruction device (scf CH}_4/\text{scf)} \]

\[VAM_{flow,t} = \text{Hourly average flow rate of ventilation air sent to a destruction device (scf/hour) (scfm)} \]

And:

\[C_{CH4,MG} = \frac{\sum_t DV_{MG,t} \times C_{CH4,MG,t}}{\sum_t DV_{MG,t}} \]

\[C_{CH4,MG} = \frac{\sum_t (DV_{MG,t} \times C_{CH4,MG,t})}{\sum_t DV_{MG,t}} \]

\[\text{Where,} \]
\[C_{CH4,MG,t} = \text{Daily average methane concentration of mine gas sent with ventilation air to destruction device (scf CH}_4/\text{scf)} \]

\[DV_{MG,t} = \text{Daily volume of mine gas sent with ventilation air to destruction device (scf/day)} \]
Methane concentrations and flow rates must be recorded every two minutes with averages calculated at least hourly. If the Offset Project Operator or Authorized Project Designee monitors and records data at a higher frequency, this data may be used within appropriate variables of the above equations to reflect the higher frequency of data collection.

If a thermal mass flow meter is used to monitor gas flow instead of a volumetric flow meter, the volume and density terms must be replaced by the monitored mass value and the methane concentration must be in mass percent.

§ 5.1.2. Quantifying Project Emissions.
(a) Project emissions must be quantified on an annual basis over a consecutive twelve month period.
(b) Project emissions for a reporting period (PE) must be quantified by summing the emissions for all SSRs identified as included in the project in Table 4.1 and using Equation 5.6.
(c) Methane that is still vented in the project scenario is not accounted for in the project emissions or baseline emissions since it is vented in both scenarios.

Equation 5.6: Project Emissions

\[PE = PE_{EC} + PE_{MD} + PE_{UM} \]

Where,

\(PE \) = Project emissions during the reporting period (tMT CO₂e)

\(PE_{EC} \) = Project emissions from energy consumed to capture and destroy methane during the reporting period (tMT CO₂e)

\(PE_{MD} \) = Project emissions from destruction of methane during the reporting period (tMT CO₂e)

\(PE_{UM} \) = Project emissions from uncombusted methane during the reporting period (tMT CO₂e)

(d) If the project uses fossil fuel or grid electricity to power additional equipment required for project activities (e.g., capturing and destroying ventilation air, transporting ventilation air, etc.), the resulting CO₂ emissions from the energy consumed to capture and destroy methane (PE_{EC}) must be quantified using Equation 5.7.
Equation 5.7: Project Emissions from Energy Consumed to Capture and Destroy Methane

\[
PE_{EC} = (\text{CONS}_{ELEC} \times \text{CEF}_{ELEC}) + \left(\frac{\text{CONS}_{\text{HEAT}} \times \text{CEF}_{\text{HEAT}} + \text{CONS}_{\text{FF}} \times \text{CEF}_{\text{FF}}}{1000} \right)
\]

Where,

- \(PE_{EC}\) = Project emissions from energy consumed to capture and destroy methane during the reporting period (tMT CO\(_2\)e)
- \(\text{CONS}_{ELEC}\) = Additional electricity consumption for the capture and destruction of methane during the reporting period (MWh)
- \(\text{CEF}_{ELEC}\) = CO\(_2\) emission factor of electricity used from Appendix A (tMT CO\(_2\)e/MWh)
- \(\text{CONS}_{\text{HEAT}}\) = Additional heat consumption for the capture and destruction of methane during the reporting period (volume)
- \(\text{CEF}_{\text{HEAT}}\) = CO\(_2\) emission factor of heat used from Appendix A (kg CO\(_2\)/volume)
- \(\text{CONS}_{\text{FF}}\) = Additional fossil fuel consumption for the capture and destruction of methane during the reporting period (volume)
- \(\text{CEF}_{\text{FF}}\) = CO\(_2\) emission factor of fossil fuel used from Appendix A (kg CO\(_2\)/volume)
- \(1/1000\) = Conversion of kg to metric tons

(e) Project emissions from the destruction of methane (PE\(_{MD}\)) must be quantified using Equations 5.8 and 5.9.

(f) PE\(_{MD}\) must include the estimated CO\(_2\) emissions from the destruction of VAM by all qualifying and non-qualifying devices.

(g) If MG is used to supplement VAM, the MG destructed by the project during the reporting period must be accounted for using Equation 5.9 either as MG\(_{\text{SUPP},i}\) if VAM flow and mine methane flow are monitored separately, or through VAM\(_{R,i}\) if only the resulting enriched flow is monitored.

Equation 5.8: Project Emissions from Destruction of Methane

\[
PE_{MD} = \sum_i MD_{P,i} \times \text{CEF}_{\text{CH4}}
\]

Where,

- \(PE_{MD}\) = Project emissions from destruction of methane during the reporting period (tMT CO\(_2\)e)
- \(i\) = Use of methane (oxidation or alternative combustion end-use) by all qualifying and non-qualifying destruction devices
\(MDP_{i,j} \) = Methane destroyed by through use i by qualifying and non-qualifying devices during the reporting period (tMT CH₄)

\(CEF_{CH4} \) = CO₂ emission factor for combusted methane (2.752-74 tMT CO₂e/ tMT CH₄)

(f) The amount of methane destroyed (MDP,i) must be quantified using equation 5.9.

(g) If MG is used to supplement VA, the MG destroyed by the project during the reporting period must be accounted for using equation 5.9 either as MGSUPP,i, if VA flow and MG flow are monitored separately, or through VA_P,i if only the resulting enriched flow is monitored.

(h) If cooling air was added to the destruction device after the point of metering for VA, this must be accounted for with term CAflow,i,y in equations 5.9 and 5.10. If no cooling air is added, then CAflow,i,y = 0.

(i) If the flow rate of cooling air was metered, then the average metered data flow rate must be used. If the flow rate was not metered, the maximum capacity of the cooling air intake system must be used for the flow rate.

Equation 5.9: Methane Destroyed

\[
MDP_{i,j} = \sum_i (MM_{P,i} - PENO_{NO,i})
\]

Where,

\(MDP_{i,j} \) = Methane destroyed by through use i by qualifying and non-qualifying devices during the reporting period; calculated separately for each destruction device (tMT CH₄)

\(i \) = Use of methane (oxidation or alternative combustion end-use) by all qualifying and non-qualifying destruction devices

\(MM_{P,i} \) = Measured methane sent to qualifying and non-qualifying destruction devices for destruction through use i during the reporting period corrected to standard conditions, if applicable, for pressure and temperature (tMT CH₄)

\(PENO_{NO,i} \) = Project emissions of non-oxidized methane from emitted as a result of incomplete oxidation of the VA flow ventilation air stream during the reporting period (tMT CH₄)

With:

\[
MM_{P,i} = (VAM_{P,i} \times C_{CH4} + MSGSUPP,i \times C_{CH4,MG}) \times 0.0423 \times 0.000454
\]

Where,
\[V_{AMP,i} = \text{Volume of ventilation air sent to qualifying and non-qualifying devices for destruction through use}\ i\ \text{during the project during the reporting period (scf)} \]

\[C_{CH4} = \text{Weighted average of measured methane concentration of captured ventilation air sent to qualifying and non-qualifying destruction devices during the reporting period; calculated separately for each device (scf CH}_4/\text{scf)} \]

\[M_{GSUPP,i} = \text{Volume of mine methane gas extracted from a methane drainage system and sent with ventilation air to qualifying and non-qualifying destruction devices with VAM for destruction during the reporting period (scf)} \]

\[C_{CH4,MG} = \text{Weighted average of measured methane concentration of captured mine gas sent with ventilation air to qualifying and non-qualifying destruction devices during the reporting period (scf CH}_4/\text{scf)} \]

\[0.0423 = \text{Standard Density of methane (lb CH}_4/\text{scf CH}_4) \]

\[0.000454 = \text{tMT CH}_4/\text{lb CH}_4 \]

With:

\[V_{AMP,i} = V_{AMFLOW,y} \times \text{TIME}_y \]

\[\text{Where,} \]

\[V_{AMFLOW,y} = \text{Average flow rate of ventilation air entering the destruction device during period}\ y\ \text{corrected to standard conditions, if applicable, for inlet flow gas pressure and temperature (scfm)} \]

\[\text{TIME}_y = \text{Time during which destruction device is operational during period}\ y\ (\text{m}) \]

And:

\[C_{CH4} = \frac{\sum \text{VA}_{flow,t} \times C_{CH4,t}}{\sum \text{VA}_{flow,t}} \]

\[C_{CH4} = \frac{\sum \text{VA}_{flow,t} \times C_{CH4,t}}{\sum \text{VA}_{flow,t}} \]

\[\text{Where,} \]

\[C_{CH4,t} = \text{Hourly average methane concentration of ventilation air sent to a destruction device (scf CH}_4/\text{scf)} \]

\[\text{VA}_{flow,t} = \text{Hourly average flow rate of ventilation air sent to a destruction device (scf/hour)(scfm)} \]

And:
Where,

\[C_{\text{CH}_4,\text{MG},t} = \frac{\sum_t (D\text{V}_{\text{MG},t} \times C_{\text{CH}_4,\text{MG},t})}{\sum_t D\text{V}_{\text{MG},t}} \]

\[D\text{V}_{\text{MG},t} = \text{Daily volume of mine gas sent with ventilation air to destruction device (scf/day)/(scf)} \]

And:

\[PE_{\text{NO}} = V\text{AM}_{\text{FLOW},y} \times \text{TIME}_y \times C_{\text{CH}_4,\text{exhaust}} \times 0.0423 \times 0.000454 \]

\[PE_{\text{NO},i} = \sum_y \left(V\text{A}_{\text{flow},i,y} \times 60 + C\text{A}_{\text{flow},i,y} \times 60 \right) \times C_{\text{CH}_4,\text{exhaust},i} \times 0.0423 \times 0.000454 \]

Where,

\(y \) = Hours during which destruction device was operational during reporting period (h)

\(V\text{A}_{\text{flow},i,y} \) = Hourly average flow rate of ventilation air sent to a device for destruction through use i during the reporting period (scfm)

\(C\text{A}_{\text{flow},i,y} \) = Hourly average flow rate of cooling air sent to a destruction device after the metering point of the ventilation air stream during period y (scfm)

\(60 \) = Number of minutes in an hour

\[C_{\text{CH}_4,\text{exhaust},i} = \text{Weighted average of measured methane concentration in the ventilation air exhaust gas emitted from the destruction device during the reporting period (scf CH}_4/\text{scf)} \]

With:

\[C_{\text{CH}_4,\text{exhaust}} = \frac{\sum_t V\text{AM}_{\text{FLOW},t} \times C_{\text{CH}_4,\text{exhaust},t}}{\sum_t V\text{AM}_{\text{FLOW},t}} \]

\[C_{\text{CH}_4,\text{exhaust},i} = \frac{\sum_y [(V\text{A}_{\text{flow},i,y} \times 60 + C\text{A}_{\text{flow},i,y} \times 60) \times C_{\text{CH}_4,\text{exhaust},y}]}{\sum_y (V\text{A}_{\text{flow},i,y} \times 60 + C\text{A}_{\text{flow},i,y} \times 60)} \]

Where,

\[C_{\text{CH}_4,\text{exhaust},t} = \text{Hourly average methane concentration of ventilation air in ventilation air exhaust gas (scf CH}_4/\text{scf)} \]

\[V\text{AM}_{\text{FLOW},t} = \text{Hourly average flow of ventilation air sent to destruction device (scf/hour)} \]
Methane concentrations and flow rates must be recorded every two minutes with averages calculated at least hourly. If the Offset Project Operator or Authorized Project Designee monitors and records data at a higher frequency, this data may be used within appropriate variables of the above equations to reflect the higher frequency of data collection.

If a thermal mass flow meter is used to monitor gas flow instead of a volumetric flow meter, the volume and density terms must be replaced by the monitored mass value and the methane concentration must be in mass percent.

Project emissions from uncombusted methane (PE\textsubscript{UM}) must be quantified using Equation 5.10.

Equation 5.10: Project Emissions from Uncombusted Methane-Emissions

\[
PE\textsubscript{UM} = \sum_{i} PE\textsubscript{NO,i} \times GWP\textsubscript{CH4}
\]

Where,

- \(PE\textsubscript{UM}\) = Project emissions from uncombusted methane during the reporting period (t\textsubscript{MT} CO\textsubscript{2}e)
- \(i\) = Use of methane (oxidation or alternative end-use) by all qualifying and non-qualifying destruction devices
- \(PE\textsubscript{NO,i}\) = Project emissions of non-oxidized methane from emitted as a result of incomplete oxidation of the VAM ventilation air stream during the reporting period; calculated separately for each destruction device (t\textsubscript{MT} CH\textsubscript{4})
- \(GWP\textsubscript{CH4}\) = Global warming potential of methane (t\textsubscript{MT} CO\textsubscript{2}e/t\textsubscript{MT} CH\textsubscript{4})

With:

\[
PE\textsubscript{NO,i} = VAM\textsubscript{FLOW,y,i} \times TIME\textsubscript{y,i} \times C\textsubscript{CH4,exhaust,i} \times 0.0423 \times 0.000454
\]

\[
PE\textsubscript{NO,i} = \sum_{y} (VA\textsubscript{flow,y,i} \times 60 + CA\textsubscript{flow,y,i} \times 60) \times C\textsubscript{CH4,exhaust,i} \times 0.0423 \times 0.000454
\]

Where,

- \(VAM\textsubscript{FLOW,y,i}\) = Corrected average flow rate or total volume of ventilation air entering the destruction devices during period \(y\), adjusted to 60°F and 1 atm (scf/unit of time)
- \(TIME\textsubscript{y,i}\) = Time during which destruction device is operational during period \(y\) (m)
- \(y\) = Hours during which destruction device was operational during reporting period (h)
*VA*flow,\textsubscript{i,y} = Hourly average flow rate of ventilation air sent to a device for destruction through use \textit{i} during the reporting period (scfm)

*CA*flow,\textsubscript{i,y} = Hourly average flow rate of cooling air sent to a destruction device after the metering point of the ventilation air stream during period \textit{y} (scfm)

60 = Number of minutes in an hour

CCH4,exhaust,i = Weighted average of measured methane concentration in the ventilation air exhaust gas emitted from the destruction device during the reporting period (scf CH4/scf)

0.0423 = Standard density of methane (lb CH4/scf CH4)

0.000454 = \(\text{tMT \ CH4/lb \ CH4}\)

With:

\[
C_{\text{CH4,exhaust}} = \frac{\sum y \left(V_{\text{AM,flow,t}} \times C_{\text{CH4,exhaust,y}} \right)}{\sum y \left(V_{\text{AM,flow,t}} \times C_{\text{CH4,exhaust,y}} \right)}
\]

\[
C_{\text{CH4,exhaust,i}} = \frac{\sum y \left(V_{\text{flow,i,y}} \times 60 + C_{\text{flow,i,y}} \times 60 \right) \times C_{\text{CH4,exhaust,y}}}{\sum y \left(V_{\text{flow,i,y}} \times 60 + C_{\text{flow,i,y}} \times 60 \right)}
\]

\textit{Where,}

CCH4,exhaust,ty = Hourly average methane concentration of ventilation air in ventilation air exhaust gas (scf CH4/scf)

VAMflow,t = Hourly average flow of ventilation air sent to destruction device (scf/hour)

Methane concentrations and flow rates must be recorded every two minutes with averages calculated at least hourly. If the Offset Project Operator or Authorized Project Designee monitors and records data at a higher frequency, this data may be used within appropriate variables of the above equations to reflect the higher frequency of data collection.

If a thermal mass flow meter is used to monitor gas flow instead of a volumetric flow meter, the volume and density terms must be replaced by the monitored mass value and the methane concentration must be in mass percent.

\textit{If} gas flow metering equipment does not internally correct for temperature and pressure provides an actual flow rate instead of a flow rate adjusted to standard conditions, apply Equation 5.11 to standardize the flow rate of ventilation air \(\text{VA}\) entering the destruction device.
Equation 5.11: VAM-Corrected Flow Rate or Volume Adjusted for Temperature and Pressure

\[V_{\text{AMFLOW}}(y) = V_{\text{AMFLOWmeas}}(y) \times \frac{520}{T_{\text{VAMinflow,}y}} \times \frac{P_{\text{VAMinflow,}y}}{1} \]

\[V_{\text{Aadjusted,}y} = V_{\text{Aactual,}y} \times \frac{519.67}{T_{\text{Vainflow,}y}} \times \frac{P_{\text{Vainflow,}y}}{1} \]

Where,

- \(V_{\text{AMFLOW}}(y) \): Corrected average flow rate or total volume of ventilation air entering the destruction device during period/time interval \(y \), adjusted to 60°F and 1 atm standard conditions (scf/unit of time)(scfm or scf)
- \(V_{\text{AMFLOWmeas}}(y) \): Measured average flow rate or total volume of ventilation air entering the destruction device as measured during period/time interval \(y \) (scf/unit of time)(acfm or acf)
- \(T_{\text{VAMinflow,}y} \): Measured absolute temperature of ventilation air entering the destruction device for the time interval \(y \), \(^\circ\text{R}=\,^\circ\text{F}+460\ 459.67\) (°R)
- \(P_{\text{VAMinflow,}y} \): Measured absolute pressure of ventilation air entering the destruction device for the time interval \(y \) (atm)

§ 5.2. Active Underground Mine Methane Drainage Activities.

(a) GHG emission reductions for a reporting period (ER) must be quantified by subtracting the project emissions for that reporting period (PE) from the baseline emissions for that reporting period (BE) using Equation 5.12.

(b) If a mine that has historically sent mine methane (MM) to a natural gas pipeline ceases to do so, MM from that source (pre-mining surface wells, pre-mining in-mine boreholes, or post-mining gob wells) is ineligible for emission reduction under this protocol, even if the MM is sent to an otherwise eligible destruction device. If a mine begins to inject MM into a natural gas pipeline while the offset project is ongoing, MM from that source is ineligible for emission reductions going forward.

(c) MM that is injected into a natural gas pipeline in the project scenario is not accounted for in the project emissions or baseline emissions, since it is injected in both scenarios.
Equation 5.12: GHG Emission Reductions

\[ER = BE - PE \]

Where,

\begin{align*}
ER & \quad = \text{Emission reductions achieved by the project during the reporting period (tMT CO}_2\text{e)} \\
BE & \quad = \text{Baseline emissions during the reporting period (tMT CO}_2\text{e)} \\
PE & \quad = \text{Project emissions during the reporting period (tMT CO}_2\text{e)}
\end{align*}

§5.2.1. Quantifying Baseline Emissions.
(a) Baseline emissions for a reporting period (BE) must be estimated by summing the baseline emissions for all SSRs identified as included in the baseline in Table 4.2 and using Equation 5.13.

Equation 5.13: Baseline Emissions

\[BE = BE_{MD} + BE_{MR} \]

Where,

\begin{align*}
BE & \quad = \text{Baseline emissions during the reporting period (tMT CO}_2\text{e)} \\
BE_{MD} & \quad = \text{Baseline emissions from destruction of methane during the reporting period (tMT CO}_2\text{e)} \\
BE_{MR} & \quad = \text{Baseline emissions from release of methane into the atmosphere avoided by the project during the reporting period (tMT CO}_2\text{e)}
\end{align*}

(b) Baseline emissions from the destruction of MM (BE_{MD}) must be quantified using Equations 5.14 and 5.15.

(c) BE_{MD} must include the estimated CO2 emissions from the destruction of MM in non-qualifying devices.

(d) Mine gas (MG) can originate from three distinct sources for active underground mine methane drainage activities: pre-mining surface wells, pre-mining in-mine boreholes, and post-mining gob wells. MG from these sources must be measured and accounted for individually per the equations in this section.

(e) For each eligible methane source, the volume or mass of MG that would have been sent to a non-qualifying device for destruction during the reporting period in the baseline must be determined by calculating and comparing:
(1) The volume or mass of MG sent to non-qualifying devices during the reporting period, adjusted for temperature and pressure using Equation 5.23, if applicable; and

(2) The volume or mass of MG sent to non-qualifying devices during the three-year period prior to offset project commencement (or during the length of time the devices are operational, if less than three years), adjusted for temperature and pressure using Equation 5.23, if applicable, and averaged according to the length of the reporting period.

(3) The volume or mass of MG sent to non-qualifying devices during the time period a law, regulation, or legally binding mandate, in place for less than three years prior to offset project commencement, was in effect, adjusted for temperature and pressure using Equation 5.23, if applicable, and averaged according to the length of the reporting period.

(f) For each methane source, the largest of the three above quantities must be used in Equation 5.15.

(g) If using a quantity from calculation (2) or (3) above and the project does not have data on the concentration of the methane to use in Equations 5.15 and 5.16, the highest single-day average methane concentration measured for that methane source during the reporting period must be used in its place.

(h) For the purpose of baseline quantification, only non-qualifying devices that were operating during the year prior to offset project commencement should be taken into account.

(i)(d) If there is no destruction of methane in the baseline, then $BE_{MD} = 0$.

Equation 5.14: Baseline Emissions from Destruction of Methane

$$BE_{MD} = \sum_i MD_{B,i} \times CEF_{CH4}$$

Where,

- BE_{MD} = Baseline emissions from destruction of methane during the reporting period (tMT CO$_2$e)
- $MD_{B,i}$ = Use of methane (flaring, power generation, heat generation, production of transportation fuel, injection into natural gas pipeline, etc.) by non-qualifying destruction devices
\[MD_{B,i} = \text{Methane that would have been destroyed through use i by non-qualifying devices during the reporting period} \ (\text{tMT CH}_4) \]

\[CEF_{CH4} = \text{CO}_2 \text{ emission factor for combusted methane} \ (2.752.744 \text{ tMT CO}_2e/\text{tMT CH}_4) \]

(e) The amount of mine methane destroyed \((MD_{B,i})\) must be quantified using equation 5.15.

(f) Mine gas \((MG)\) can originate from three distinct sources for active underground mine methane drainage activities: pre-mining surface wells, pre-mining in-mine boreholes, and post-mining gob wells. MG from these sources must be measured and accounted for individually per the equations in this section.

(g) For the purpose of baseline quantification, only non-qualifying destruction devices that were operating during the year prior to offset project commencement should be taken into account.

(h) For each eligible methane source, the volume or mass of MG that would have been sent to a non-qualifying device for destruction during the reporting period in the baseline must be determined by calculating and comparing:

1. The volume or mass of MG sent to non-qualifying destruction devices during the current reporting period, adjusted for temperature and pressure using equation 5.23, if applicable;

2. The volume or mass of MG sent to non-qualifying destruction devices during the three-year period prior to offset project commencement (or during the length of time the devices are operational, if less than three years), adjusted for temperature and pressure using equation 5.23, if applicable, and averaged according to the length of the reporting period;

3. The volume or mass of MG sent to non-qualifying destruction devices during the time period a law, regulation, or legally binding mandate, in place for less than three years prior to offset project commencement, was in effect, adjusted for temperature and pressure using equation 5.23, if applicable, and averaged according to the length of the reporting period.

(i) For each methane source, the largest of the three quantities determined in sections 5.2.1(h)(1)-(3) must be used for the volume of MG that would have been...
sent to a non-qualifying device for destruction through use \(i \) during the reporting period in the baseline scenario \((PSW_{B,i}, PIB_{B,i}, \text{ and } PGW_{B,i})\) in equations 5.15 and 5.16.

(i) If using a quantity for \(PSW_{B,i}, PIB_{B,i}, \text{ or } PGW_{B,i} \) determined by section 5.2.1(h)(1), data for daily volume of mine gas \((DV_t)\), methane concentration of mine gas \((C_{CH4,t})\), volume of mine gas sent for destruction with ventilation air \((MG_{SUPP,i})\), and methane concentration of mine gas sent for destruction with ventilation air \((C_{CH4,MG})\) must be monitored for the non-qualifying destruction devices and used in equations 5.15 and 5.16.

(k) If using a quantity for \(PSW_{B,i}, PIB_{B,i}, \text{ or } PGW_{B,i} \) determined by section 5.2.1(h)(2) or 5.2.1(h)(3), historical data for daily volume of mine gas \((DV_t)\), methane concentration of mine gas \((C_{CH4,t})\), volume of mine gas sent for destruction with ventilation air \((MG_{SUPP,i})\), and methane concentration of mine gas sent for destruction with ventilation air \((C_{CH4,MG})\) must be used in equations 5.15 and 5.16, if available.

(l) If using a quantity for \(PSW_{B,i}, PIB_{B,i}, \text{ or } PGW_{B,i} \) determined by section 5.2.1(h)(2) or 5.2.1(h)(3), and historical data for daily volume of mine gas \((DV_t)\) is not available, the highest single day volume of mine gas sent to any qualifying or non-qualifying destruction device during the reporting period must be used in place of historical data.

(m) If using a quantity for \(PSW_{B,i}, PIB_{B,i}, \text{ or } PGW_{B,i} \) determined by section 5.2.1(h)(2) or 5.2.1(h)(3), and historical data for volume of mine gas sent for destruction with ventilation air \((MG_{SUPP,i})\) is not available, the largest volume of mine gas sent to any qualifying or non-qualifying destruction device during the reporting period must be used in place of historical data.

(n) If using a quantity for \(PSW_{B,i}, PIB_{B,i}, \text{ or } PGW_{B,i} \) determined by section 5.2.1(h)(2) or 5.2.1(h)(3), and historical data for methane concentration of mine gas \((C_{CH4,t})\) and methane concentration of mine gas sent for destruction with ventilation air \((C_{CH4,MG})\) are not available, the highest single-hour average methane concentrations during the reporting period must be used in place of historical data.
Offset Project Operators and Authorized Project Designees may choose to use default methane destruction efficiencies (DE$_i$) provided in appendix B or site-specific methane destruction efficiencies. Destruction technologies not listed in appendix B must use site-specific methane destruction efficiencies. Site-specific methane destruction efficiencies that are demonstrated to the satisfaction of the Executive Officer to be equally or more accurate than the default methane destruction efficiencies may be used upon written approval by the Executive Officer.

Equation 5.15: Methane Destroyed in Baseline

$$MD_{B,i} = \sum_i \{MM_{B,i} \times DE_i\}$$

Where,

- $MD_{B,i}$ = Methane that would have been destroyed through use i by non-qualifying devices during the reporting period; calculated separately for each destruction device (tMT CH$_4$)
- i = Use of methane (flaring, power generation, heat generation, production of transportation fuel, injection into natural gas pipeline, etc.) by non-qualifying destruction devices
- $MM_{B,i}$ = Measured mMethane that would have been sent to non-qualifying devices for destruction through use i during the reporting period; calculated separately for each device (tMT CH$_4$)
- DE_i = Efficiency of methane destruction device i, either site-specific or from Appendix B (%)

With:

$$MM_{B,i} = \sum_i (PSW_{B,i} \times C_{CH4} + PIB_{B,i} \times C_{CH4} + ECW_{B,i} \times C_{CH4} + AWR_{B,i} \times C_{CH4} + CDW_{B,i} \times C_{CH4}) \times 0.0423 \times 0.000454$$

$$MM_{B,i} = (PSW_{B,i} \times C_{CH4} + PIB_{B,i} \times C_{CH4} + PGW_{B,i} \times C_{CH4}) \times 0.0423 \times 0.000454$$

Where,

- $PSW_{B,i}$ = Volume of MG from pre-mining surface wells that would have been sent to non-qualifying devices for destruction through use i during the reporting period in the baseline scenario (scf)
- $PIB_{B,i}$ = Volume of MG from pre-mining in-mine boreholes that would have been sent to non-qualifying devices for destruction through use i during the reporting period in the baseline scenario (scf)
\[PGW_{B,i} = \text{Volume of MG from post-mining gob wells that would have been sent to non-qualifying devices for destruction through use during the reporting period in the baseline scenario (scf)} \]
\[C_{CH_4} = \text{Weighted average of measured methane concentration of mine gas captured from methane sources that would have been sent to non-qualifying destruction devices during the reporting period; calculated separately for each methane source (scf CH}_4/\text{scf)} \]
\[0.0423 = \text{Standard density of methane (lb CH}_4/\text{scf CH}_4) \]
\[0.000454 = \text{tMT CH}_4/\text{lb CH}_4 \]

With:
\[C_{CH_4,t} = \frac{\sum_t DV_t \times C_{CH_4,t}}{\sum_t DV_t} \]
\[C_{CH_4} = \frac{\sum_t (DV_t \times C_{CH_4,t})}{\sum_t DV_t} \]

Where,
\[C_{CH_4,t} = \text{Daily average methane concentration of mine gas captured from methane sources sent to a destruction device; calculated separately for each methane source (scf CH}_4/\text{scf)} \]
\[DV_t = \text{Daily volume of mine gas sent to a destruction device; calculated separately for each methane source (scf/day)} \]

Methane concentrations and flow rates must be recorded every two minutes with averages calculated at least hourly. If the Offset Project Operator or Authorized Project Designee monitors and records data at a higher frequency, this data may be used within appropriate variables of the above equations to reflect the higher frequency of data collection.

If a thermal mass flow meter is used to monitor gas flow instead of a volumetric flow meter, the volume and density terms must be replaced by the monitored mass value and the methane concentration must be in mass percent.

(j)p Baseline emissions from the release of methane (BE_{MR}) must be quantified using Equation 5.16.

(k)q BE_{MR} must account for the total amount of methane actually destroyed by all qualifying and non-qualifying devices during the reporting period.

(l)r Emissions from the release of methane through a pre-mining surface wells are only accounted for in the baseline during the reporting period(e) in which the emissions would have occurred (i.e., when the well is mined through). For the
purposes of this protocol, a well at an active underground mine is considered mined through when any of the following occur:

(1) The working face intersects the borehole, as long as the endpoint of the borehole is not more than 50 meters below the mined coal seam;

(2) The working face passes directly underneath the bottom of the borehole, as long as the endpoint of the borehole is not more than 150 meters above the mined coal seam;

(3) The working face passes both underneath (not more than 150 meters below the endpoint of the borehole) and to the side of the borehole if room and pillar mining technique is employed and the endpoint of the borehole lies above a block of coal that will be left unmined as a pillar; or

(4) The well produces elevated amounts of atmospheric gases (the percent concentration of nitrogen in mine gas _{MG} increases by five compared to baseline levels). A full gas analysis using a gas chromatograph must be completed by an ISO 17025 accredited lab or a lab that has been certified by an accreditation body conformant with ISO 17025 to perform test methods appropriate for atmospheric gas content analysis. To ensure that elevated nitrogen levels are the result of a well being mined through and not the result of a leak in the well, the gas analysis must show that oxygen levels did not increase by the same proportion as the nitrogen levels.

(m)(s) If using option 1, 2, or 3 section 5.2.1(r)(1), (2), or (3) to demonstrate that a well is mined through, an up-to-date mine plan must be used to identify which wells were mined through, based on the above criteria, and therefore eligible for baseline quantification in any given reporting period.

(n)(t) If the mine plan calls for mining past rather than through a borehole, MMMG from that borehole extracted from within the methane source boundaries as described in section 3.5(d)(2) is eligible for quantification in the baseline when the linear distance between the endpoint of the borehole and the working face that will pass nearest the endpoint of the borehole has reached an absolute minimum.

(e)(u) If an MMC project at an active underground mine consists of both VAM and methane drainage activities, mine gas _{MG} extracted from a methane drainage
system (MG\text{SUPP},i) may be used to supplement VAM to either increase or help balance the concentration of methane flowing into the destruction device. If MG is used to supplement VAM, the MG destructed by the project during the reporting period must be accounted for using Equation 5.16 as MG\text{SUPP},i.

\[\text{MM that is still vented in the project scenario is not accounted for in the project emissions or baseline emissions, since it is vented in both scenarios.} \]

Equation 5.16: Baseline Emissions from Release of Methane

\[
BE_{MR} = \sum_i [(PSW_{P,i} \times C_{CH4} - PSW_{B,i} \times C_{CH4-i}) + (PIB_{P,i} \times C_{CH4} - PIB_{B,i} \times C_{CH4}) + (PGW_{P,i} \times C_{CH4} - PGW_{B,i} \times C_{CH4}) - MG_{SUPP,i} \times C_{CH4,MG}] \times 0.0423 \times 0.000454 \times GWP_{CH4}
\]

Where,

- \(BE_{MR} \) = Baseline emissions from release of methane into the atmosphere avoided by the project during the reporting period (tMT CO\textsubscript{2}e)
- \(i \) = Use of methane (flaring, power generation, heat generation, production of transportation fuel, injection into natural gas pipeline, etc.) by all qualifying and non-qualifying destruction devices
- \(PSW_{P,i} \) = Volume of MG from pre-mining surface wells sent to qualifying and non-qualifying devices for destruction through use i during the reporting period. For qualifying devices, only the eligible amount per Equation 5.17 in accordance with sections 5.2.1(k), (l) and (m)(r), (s), and (t) must be quantified (scf)
- \(PSW_{B,i} \) = Volume of MG from pre-mining surface wells that would have been sent to non-qualifying devices for destruction through use i during the reporting period in the baseline scenario (scf)
- \(PIB_{P,i} \) = Volume of MG from pre-mining in-mine boreholes sent to qualifying and non-qualifying devices for destruction through use i during the reporting period (scf)
- \(PIB_{B,i} \) = Volume of MG from pre-mining in-mine boreholes that would have been sent to non-qualifying devices for destruction through use i during the reporting period in the baseline scenario (scf)
- \(PGW_{P,i} \) = Volume of MG from post-mining gob wells sent to qualifying and non-qualifying devices for destruction through use i during the reporting period (scf)
- \(PGW_{B,i} \) = Volume of MG from post-mining gob wells that would have been sent to non-qualifying devices for destruction through use i during the reporting period in the baseline scenario (scf)
- \(C_{CH4} \) = Weighted average of measured methane concentration of mine gas captured from methane sources sent to qualifying and non-qualifying
destruction devices during the reporting period; calculated separately for each methane source (scf CH₄/scf)

\[M_{G_{SUPP,i}} \]

= Volume of mine methane gas extracted from a methane drainage system and sent with ventilation air to qualifying and non-qualifying devices for combustion with VAM_{destruction} during the reporting period (scf)

\[C_{CH₄,MG} \]

= Weighted average of measured methane concentration of captured mine gas sent with ventilation air to qualifying and non-qualifying destruction devices during the reporting period (scf CH₄/scf)

0.0423 = Standard Density of methane (lb CH₄/scf CH₄)

0.000454 = tMT CH₄/lb CH₄

\[GWP_{CH₄} \]

= Global warming potential of methane (tMT CO₂e/tMT CH₄)

With:

\[P_{SW_{P,i}} = P_{SW_{e,i}} + P_{SW_{nqdi}} \]

Where,

\[P_{SW_{e,i}} \]

= Volume of MG from pre-mining surface wells sent to qualifying devices for destruction through use i that is eligible for quantification in the reporting period; Quantified using Equation 5.17 (scf)

\[P_{SW_{nqdi}} \]

= Volume of MG from pre-mining surface wells sent to non-qualifying devices for destruction through use i during the reporting period (scf)

And:

\[C_{CH₄} = \frac{\sum_t D_{V,t} \times C_{CH₄,t}}{\sum_t D_{V,t}} \]

Where,

\[C_{CH₄,t} \]

= Daily average methane concentration of mine gas captured from methane sources sent to a destruction device; calculated separately for each methane source (scf CH₄/scf)

\[D_{V,t} \]

= Daily volume of mine gas sent to a destruction device (scf/day)

And:

\[C_{CH₄MG} = \frac{\sum_t (D_{V_{MG,t}} \times C_{CH₄,MG,t})}{\sum_t D_{V_{MG,t}}} \]

Where,

\[C_{CH₄,MG,t} \]

= Daily average concentration of methane in mine gas sent to a destruction device; calculated separately for each methane source (scf CH₄/scf)
\[C_{CH_4,MG,t} = \text{Daily average methane concentration of mine gas sent with ventilation air to destruction device (scf CH}_4/\text{scf)} \]

\[DV_{MG,t} = \text{Daily volume of mine gas sent with ventilation air to destruction device (scf/day)} \]

Methane concentrations and flow rates must be recorded every two minutes with averages calculated at least hourly. If the Offset Project Operator or Authorized Project Designee monitors and records data at a higher frequency, this data may be used within appropriate variables of the above equations to reflect the higher frequency of data collection.

If a thermal-mass flow meter is used to monitor gas flow instead of a volumetric flow meter, the volume and density terms must be replaced by the monitored mass value and the methane concentration must be in mass percent.

\((q)(w)\) The eligible amount of MG from pre-mining surface wells destroyed by qualifying devices \((PSWei)\) must be determined by using Equation 5.17.

Equation 5.17: Eligible MG from Pre-mining Surface Boreholes

\[PSWei = PSWe_{pre,i} + PSWe_{post,i} \]

Where,

\[PSWei = \text{Volume of MG from pre-mining surface wells captured and destroyed by sent to qualifying devices for destruction through use } i \text{ that is eligible for quantification in the reporting period for use in Equation 5.16. (scf)} \]

\[i = \text{Use of methane (flaring, power generation, heat generation, production of transportation fuel, etc.) by all qualifying destruction devices} \]

\[PSWe_{pre,i} = \text{Volume of MG destroyed by sent to qualifying destruction devices, from the offset project commencement date beginning of the crediting period through the end of the current reporting period, captured from pre-mining surface wells that were mined through during the current reporting period (scf)} \]

\[PSWe_{post,i} = \text{Volume of MG destroyed by sent to qualifying destruction devices in the current reporting period captured from pre-mining surface wells that were mined through during earlier reporting periods (scf)} \]

§ 5.2.2. Quantifying Project Emissions.

(a) Project emissions must be quantified on an annual basis over a consecutive twelve month period.
(b) Project emissions for a reporting period (PE) must be quantified by summing the emissions for all SSRs identified as included in the project in Table 4.2 and using Equation 5.18.

(c) Mine Methane that is still vented in the project scenario is not accounted for in the project emissions or baseline emissions since it is vented in both scenarios.

Equation 5.18: Project Emissions

\[PE = PE_{EC} + PE_{MD} + PE_{UM} \]

Where,

- **PE** = Project emissions during the reporting period (tMT CO₂e)
- **PE_{EC}** = Project emissions from energy consumed to capture and destroy methane during the reporting period (tMT CO₂e)
- **PE_{MD}** = Project emissions from destruction of methane during the reporting period (tMT CO₂e)
- **PE_{UM}** = Project emissions from uncombusted methane during the reporting period (tMT CO₂e)

(d) If the project uses fossil fuel or grid electricity to power additional equipment required for project activities (e.g., capturing and destroying mine gas, transporting mine gas, etc.), the resulting CO₂ emissions from the energy consumed to capture and destroy methane (PE_{EC}) must be quantified using Equation 5.19.

(e) If the total electricity generated by project activities is greater than the additional electricity consumed for the capture and destruction of methane, then the CONSEL = 0 term may be omitted from Equation 5.19.

Equation 5.19: Project Emissions from Energy Consumed to Capture and Destroy Methane

\[PE_{EC} = (CONS_{ELEC} \times CEF_{ELEC}) + \left(\frac{CONS_{HEAT} \times CEF_{HEAT} + CONS_{FF} \times CEF_{FF}}{1000}\right) \]

Where,

- **PE_{EC}** = Project emissions from energy consumed to capture and destroy methane during the reporting period (tMT CO₂e)
- **CONS_{ELEC}** = Additional electricity consumption for the capture and destruction of methane during the reporting period (MWh)
CEFELEC = CO₂ emission factor of electricity used from Appendix A (tMT CO₂e/MWh)

CONSHEAT = Additional heat consumption for the capture and destruction of methane during the reporting period (volume)

CEFHEAT = CO₂ emission factor of heat used from Appendix A (kg CO₂/volume)

CONSFF = Additional fossil fuel consumption for the capture and destruction of methane during the reporting period (volume)

CEFFF = CO₂ emission factor of fossil fuel used from Appendix A (kg CO₂/volume)

1/1000 = Conversion of kg to metric tons

(f) Project emissions from the destruction of methane (PEMD) must be quantified using Equations 5.20 and 5.21.

(g) Project emissions must include the CO₂ emissions resulting from the destruction of all MMMG from pre-mining surface wells that took place during the reporting period regardless of whether or not the well is mined through by the end of the reporting period.

Equation 5.20: Project Emissions from Destruction of Captured Methane

\[PE_{MD} = \sum_i MDP_{P,i} \times CEF_{CH4} \]

Where,

PEMD = Project emissions from destruction of methane during the reporting period (tMT CO₂e)

i = Use of methane (flaring, power generation, heat generation, production of transportation fuel, injection into natural gas pipeline, etc.) by all qualifying and non-qualifying destruction devices

MDP_{P,i} = Methane destroyed by through use i by qualifying and non-qualifying devices during the reporting period (tMT CH₄)

CEF_{CH4} = CO₂ emission factor for combusted methane (2.752.744 tMT CO₂e/ tMT CH₄)

(h) The amount of mine methane destroyed (MDᵢ) must be quantified using Equation 5.21.

(i) Offset Project Operators and Authorized Project Designees may choose to use default methane destruction efficiencies (DEᵢ) provided in Appendix B or site-specific methane destruction efficiencies. Destruction technologies not listed in
appendix B must use site-specific methane destruction efficiencies. Site-specific methane destruction efficiencies that are demonstrated to the satisfaction of the Executive Officer to be equally or more accurate than the default methane destruction efficiencies may be used upon written approval by the Executive Officer.

Equation 5.21: Methane Destroyed

\[
MD_{P,i} = \sum_i (MM_{P,i} \times DE_i)
\]

Where,

- \(MD_{P,i}\) = Methane destroyed by through use \(i\) by qualifying and non-qualifying devices during the reporting period; calculated separately for each destruction device (tMT CH\(_4\))
- \(i\) = Use of methane (flaring, power generation, heat generation, production of transportation fuel, injection into natural gas pipeline, etc.) by all qualifying and non-qualifying destruction devices
- \(MM_{P,i}\) = Methane measured sent to qualifying and non-qualifying devices for destruction through use \(i\) during the reporting period corrected to standard conditions, if applicable, for pressure and temperature; calculated separately for each device (tMT CH\(_4\))
- \(DE_i\) = Efficiency of methane destruction device \(i\), either site-specific or from Appendix B (%)

With:

\[
MM_{P,i} = \sum_i (PSWP_{all,i} \times C_{CH4} + PIB_{P,i} \times C_{CH4} + PGWP_{P,i} \times C_{CH4} - MGSUPP_{i} \times C_{CH4,MG}) \times 0.0423 \times 0.000454
\]

Where,

- \(PSWP_{all,i}\) = Volume of MG from pre-mining surface wells captured and destroyed by sent to qualifying and non-qualifying devices for destruction through use \(i\) during the reporting period. For qualifying devices, all MG, whether from a mined through well or not must be quantified (scf)
- \(PIB_{P,i}\) = Volume of MG from pre-mining in-mine boreholes captured and destroyed by sent to qualifying and non-qualifying devices for destruction through use \(i\) during the reporting period (scf)
- \(PGWP_{P,i}\) = Volume of MG from post-mining gob wells captured and destroyed by sent to qualifying and non-qualifying devices for destruction through use \(i\) during the reporting period (scf)
\[C_{CH4} = \text{Weighted average of measured methane concentration of mine gas captured from methane sources sent to qualifying and non-qualifying destruction devices during the reporting period; calculated separately for each methane source (scf CH}_4/\text{scf)} \]

\[MG_{SUPP,i} = \text{Volume of mine methane gas extracted from a methane drainage system and combusted sent with ventilation air to qualifying and non-qualifying devices for destruction with VAM during the reporting period (scf)} \]

\[C_{CH4,MG} = \text{Weighted average of measured methane concentration of captured mine gas sent with ventilation air to qualifying and non-qualifying destruction devices during the reporting period (scf CH}_4/\text{scf)} \]

\[0.0423 = \text{Standard Density of methane (lb CH}_4/\text{scf CH}_4) \]

\[0.000454 = \text{tMT CH}_4/\text{lb CH}_4 \]

And:

\[C_{CH4} = \frac{\sum_t (DV_t \times C_{CH4,t})}{\sum_t DV_{MG,t}} \]

Where,

\[C_{CH4,t} = \text{Daily average methane concentration of mine gas captured from methane sources sent to a destruction device; calculated separately for each methane source (scf CH}_4/\text{scf)} \]

\[DV_t = \text{Daily volume of mine gas sent to a destruction device (scf/day)} \]

And:

\[C_{CH4MG} = \frac{\sum_t (DV_{MG,t} \times C_{CH4,MG,t})}{\sum_t DV_{MG,t}} \]

Where,

\[C_{CH4,MG,t} = \text{Daily average methane concentration of mine gas sent with ventilation air to destruction device (scf CH}_4/\text{scf)} \]

\[DV_{MG,t} = \text{Daily volume of mine gas sent with ventilation air to destruction device (scf/day)} \]

Methane concentrations and flow rates must be recorded every two minutes with averages calculated at least hourly. If the Offset Project Operator or Authorized Project Designee monitors and records data at a higher frequency, this data may be used within
appropriate variables of the above equations to reflect the higher frequency of data collection.

If a thermal mass flow meter is used to monitor gas flow instead of a volumetric flow meter, the volume and density terms must be replaced by the monitored mass value and the methane concentration must be in mass percent.

(j) Project emissions from uncombusted methane (PE_{UM}) must be quantified using
Equation 5.22.

(k) Project emissions from uncombusted methane must include emissions from all
MG from pre-mining surface wells sent to destruction devices during the
reporting period regardless of whether or not the well is mined through by the
end of the reporting period.

(k)(l) Offset Project Operators and Authorized Project Designees may choose to use
default methane destruction efficiencies (DE_i) provided in Appendix B or site-
specific methane destruction efficiencies. Destruction technologies not listed in
appendix B must use site-specific methane destruction efficiencies. Site-specific
methane destruction efficiencies that are demonstrated to the satisfaction of the
Executive Officer to be equally or more accurate than the default methane
destruction efficiencies may be used upon written approval by the Executive
Officer.

Equation 5.22: Project Emissions from Uncombusted Methane Emissions

\[
PE_{UM} = \sum_i \left[MM_{P,i} \times (1 - DE_i) \right] \times GWP_{CH4}
\]

Where,

- \(PE_{UM}\) = Project emissions from uncombusted methane during the reporting period \((tMT CO_2e)\)
- \(i\) = Use of methane (flaring, power generation, heat generation, production of transportation fuel, injection into natural gas pipeline etc.) by all qualifying and non-qualifying destruction devices
- \(MM_{P,i}\) = Measured methane sent to qualifying and non-qualifying devices for destruction through use i during the reporting period; calculated separately for each destruction device \((tMT CH_4)\)
- \(DE_i\) = Efficiency of methane destruction device i, either site-specific or from Appendix B \(\%\)
- \(GWP_{CH4}\) = Global warming potential of methane \((tMT CO_2e/tMT CH_4)\)
With:

\[MM_{P,i} = \sum_i (PSW_{P,all,i} \times C_{CH4} + PIB_{P,i} \times C_{CH4} + PGW_{P,i} \times C_{CH4} - MG_{SUPP,i} \times C_{CH4,MG}) \times 0.0423 \times 0.000454 \]

Where,

- \(PSW_{P,all,i} \): Volume of MG from pre-mining surface wells sent to qualifying and non-qualifying devices for destruction through use \(i \) during the reporting period. For qualifying devices, all MG, whether from a mined through well or not must be quantified (scf).

- \(PIB_{P,i} \): Volume of MG from pre-mining in-mine boreholes sent to qualifying and non-qualifying devices for destruction through use \(i \) during the reporting period (scf).

- \(PGW_{P,i} \): Volume of MG from post-mining gob wells sent to qualifying and non-qualifying devices for destruction through use \(i \) during the reporting period (scf).

- \(C_{CH4} \): Weighted average of measured methane concentration of mine gas captured from methane sources sent to qualifying and non-qualifying destruction devices during the reporting period; calculated separately for each methane source (scf CH4/scf).

- \(MG_{SUPP,i} \): Volume of mine methane gas extracted from a methane drainage system and sent with ventilation air to qualifying and non-qualifying devices for destruction during the reporting period with VAM (scf).

- \(C_{CH4,MG} \): Weighted average of measured methane concentration of captured mine gas sent with ventilation air for destruction to qualifying and non-qualifying destruction devices during the reporting period (scf CH4/scf).

- 0.0423: Standard Density of methane (lb CH4/scf CH4).

- 0.000454: tMT CH4/lb CH4.

And:

\[C_{CH4} = \frac{\sum_i DV_t \times C_{CH4,t}}{\sum_i DV_t} \]

\[C_{CH4,t} = \frac{\sum_t (DV_t \times C_{CH4,t})}{\sum_t DV_t} \]

Where,

- \(C_{CH4,t} \): Daily average methane concentration of mine gas captured from methane sources sent to a destruction device; calculated separately for each methane source (scf CH4/scf).

- \(DV_t \): Daily volume of mine gas sent to a destruction device (scf/day).

And:
\[
C_{CH4MG} = \frac{\sum \left(DV_{MG,t} \times C_{CH4,MG,t} \right)}{\sum DV_{MG,t}}
\]

Where,

\(C_{CH4,MG,t} \) = Daily average methane concentration of mine gas sent with ventilation air to destruction device (scf CH4/scf)

\(DV_{MG,t} \) = Daily volume of mine gas sent with ventilation air to destruction device (scf/day)

Methane concentrations and flow rates must be recorded every two minutes with averages calculated at least hourly. If the Offset Project Operator or Authorized Project Designee monitors and records data at a higher frequency, this data may be used within appropriate variables of the above equations to reflect the higher frequency of data collection.

If a thermal-mass flow meter is used to monitor gas flow instead of a volumetric flow meter, the volume and density terms must be replaced by the monitored mass value and the methane concentration must be in mass percent.

(1)(m) If gas flow metering equipment does not internally correct for temperature and pressure provides an actual flow rate or volume instead of a flow rate or volume adjusted to standard conditions, use Equation 5.23 to determine standardize the amount of mine gas MG sent to each qualifying and non-qualifying device during the reporting period.

Equation 5.23: MG Flow Rate or Volume CorrectedAdjusted for Temperature and Pressure

\[
MG_{corrected, i,y} = \frac{MG_{meas, i,y} \times 520 \times P_{MG,y}}{T_{MG,y}}
\]

\[
MG_{adjusted, y} = \frac{MG_{actual, y} \times 519.67 \times P_{MG,y}}{T_{MG,y}}
\]

Where,

\(MG_{corrected, i,y} \) = Corrected Average flow rate or total volume of MG collected for the sent to a destruction device during time interval \(y \) at utilization type \(i \), adjusted to 60°F and 1 atm standard conditions (scfm or scf)

\(MG_{adjusted, y} \) = MG actual flow rate or total volume of MG collected during time interval \(y \) (scfm or scf)
\[MG_{\text{massactual},y} = \text{Measured average flow rate or total volume of MG collected for the sent to a destruction device during time interval } y \text{ at utilization type } i \text{ (scf/unit of time) (acfm or acf)} \]
\[T_{MG,y} = \text{Measured absolute temperature of the MG for the time interval } y, ^\circ R = ^\circ F + 460 \text{ or } 459.67 ^\circ R \]
\[P_{MG,y} = \text{Measured absolute pressure of the MG for the time interval } y \text{ (atm)} \]

§ 5.3. Active Surface Mine Methane Drainage Activities.
(a) GHG emission reductions for a reporting period (ER) must be quantified by subtracting the project emissions for that reporting period (PE) from the baseline emissions for that reporting period (BE) using Equation 5.24.

Equation 5.24: GHG Emission Reductions

\[ER = BE - PE \]

Where,
\[ER = \text{Emission reductions achieved by the project during the reporting period (tMT CO}_2\text{e)} \]
\[BE = \text{Baseline emissions during the reporting period (tMT CO}_2\text{e)} \]
\[PE = \text{Project emissions during the reporting period (tMT CO}_2\text{e)} \]

§ 5.3.1. Quantifying Baseline Emissions.
(a) Baseline emissions for a reporting period (BE) must be estimated by summing the baseline emissions for all SSRs identified as included in the baseline in Table 4.3 and using Equation 5.25.

Equation 5.25: Baseline Emissions

\[BE = BE_{MD} + BE_{MR} \]

Where,
\[BE = \text{Baseline emissions during the reporting period (tMT CO}_2\text{e)} \]
\[BE_{MD} = \text{Baseline emissions from destruction of methane during the reporting period (tMT CO}_2\text{e)} \]
\[BE_{MR} = \text{Baseline emissions from release of methane into the atmosphere avoided by the project during the reporting period (tMT CO}_2\text{e)} \]

(b) Baseline emissions from the destruction of SMM (BE\text{MD}) must be quantified using Equations 5.26 and 5.27.
(c) BE\text{MD} must include the estimated CO\text{2} emissions from the destruction of SMM in non-qualifying devices.
(d) Mine gas (MG) can originate from five distinct sources for active surface mine methane drainage activities: pre-mining surface wells, pre-mining in-mine boreholes, existing coal bed methane (CBM) wells that would otherwise be shut-in and abandoned as a result of encroaching mining, abandoned wells that are re-activated, and converted dewatering wells. MG from these sources must be measured and accounted for individually per the equations in this section.

(e) For each eligible methane source, the volume or mass of MG that would have been sent to a non-qualifying device for destruction during the reporting period in the baseline must be determined by calculating and comparing:

1. The volume or mass of MG sent to non-qualifying destruction devices during the reporting period, adjusted for temperature and pressure using Equation 5.38, if applicable; and

2. The volume or mass of MG sent to non-qualifying destruction devices during the three-year period prior to offset project commencement (or during the length of time the devices are operational, if less than three years), adjusted for temperature and pressure using Equation 5.38, if applicable, and averaged according to the length of the reporting period.

3. The volume or mass of MG sent to non-qualifying devices during the time period a law, regulation, or legally binding mandate, in place for less than three years prior to offset project commencement, was in effect, adjusted for temperature and pressure using Equation 5.38, if applicable, and averaged according to the length of the reporting period.

(f) For each methane source, the largest of the three above quantities must be used in Equation 5.27.

(g) If using a quantity from calculation (2) or (3) above and the project does not have data on the concentration of the methane to use in Equations 5.27 and 5.28, the highest single-day average methane concentration measured for that methane source during the reporting period must be used in its place.

(h) For the purpose of baseline quantification, only non-qualifying devices that were operating during the year prior to offset project commencement should be taken into account.
(i)(d) If there is no destruction of methane in the baseline, then $BE_{MD} = 0$.

Equation 5.26: Baseline Emissions from Destruction of Methane

$$BE_{MD} = \sum_i MD_{B,i} \times CEF_{CH4}$$

Where,

- BE_{MD} = Baseline emissions from destruction of methane during the reporting period (tMT CO$_2$e)
- i = Use of methane (flaring, power generation, heat generation, production of transportation fuel, injection into natural gas pipeline, etc.) by non-qualifying destruction devices
- $MD_{B,i}$ = Methane that would have been destroyed through use i by non-qualifying devices during the reporting period (tMT CH$_4$)
- CEF_{CH4} = CO$_2$ emission factor for combusted methane (2.752.744 tMT CO$_2$e/tMT CH$_4$)

If a thermal mass flow meter is used to monitor gas flow instead of a volumetric flow meter, the volume and density terms must be replaced by the monitored mass value and the methane concentration must be in mass percent.

(e) The amount of mine methane destroyed ($MD_{B,i}$) must be quantified using equation 5.27.

(f) MG can originate from five distinct sources for active surface mine methane drainage activities: pre-mining surface wells, pre-mining in-mine boreholes, existing CBM wells that would otherwise be shut-in and abandoned as a result of encroaching mining, abandoned wells that are re-activated, and converted dewatering wells. MG from these sources must be measured and accounted for individually per the equations in this section.

(g) For the purpose of baseline quantification, only non-qualifying destruction devices that were operating during the year prior to offset project commencement should be taken into account.

(h) For each eligible methane source, the volume or mass of MG that would have been sent to a non-qualifying device for destruction during the reporting period in the baseline must be determined by calculating and comparing:

(1) The volume or mass of MG sent to non-qualifying destruction devices during the current reporting period, adjusted for temperature and pressure using equation 5.38, if applicable;
(2) The volume or mass of MG sent to non-qualifying destruction devices during the three-year period prior to offset project commencement (or during the length of time the devices are operational, if less than three years), adjusted for temperature and pressure using equation 5.38, if applicable, and averaged according to the length of the reporting period; and

(3) The volume or mass of MG sent to non-qualifying destruction devices during the time period a law, regulation, or legally binding mandate, in place for less than three years prior to offset project commencement, was in effect, adjusted for temperature and pressure using equation 5.38, if applicable, and averaged according to the length of the reporting period.

(i) For each methane source, the largest of the three quantities determined in sections 5.3.1(h)(1)-(3) must be used for the volume of MG that would have been sent to a non-qualifying device for destruction through use i during the reporting period in the baseline scenario (PSW_{Bi}, PIB_{Bi}, ECW_{Bi}, AWR_{Bi}, and CDW_{Bi}) in equations 5.27 and 5.28.

(j) If using a quantity for PSW_{Bi}, PIB_{Bi}, ECW_{Bi}, AWR_{Bi}, and CDW_{Bi} determined by section 5.3.1(h)(1), data for daily volume of mine gas (DV_t) and methane concentration of mine gas (C_{CH4,t}) must be monitored for the non-qualifying destruction devices and used in equations 5.27 and 5.28.

(k) If using a quantity for PSW_{Bi}, PIB_{Bi}, ECW_{Bi}, AWR_{Bi}, and CDW_{Bi} determined by section 5.3.1(h)(2) or 5.3.1(h)(3), historical data for daily volume of mine gas (DV_t) and methane concentration of mine gas (C_{CH4,t}) must be used in equations 5.27 and 5.28, if available.

(l) If using a quantity for PSW_{Bi}, PIB_{Bi}, ECW_{Bi}, AWR_{Bi}, and CDW_{Bi} determined by section 5.3.1(h)(2) or 5.3.1(h)(3), and historical data for daily volume of mine gas (DV_t) is not available, the highest single day volume of mine gas sent to any qualifying or non-qualifying destruction device during the reporting period must be used in place of historical data.

(m) If using a quantity for PSW_{Bi}, PIB_{Bi}, ECW_{Bi}, AWR_{Bi}, and CDW_{Bi} determined by section 5.3.1(h)(2) or 5.3.1(h)(3), and historical data for methane concentration of
mine gas \((C_{CH4,i})\) is not available, the highest single-hour average methane concentration during the reporting period must be used in place of historical data.

(n) Offset Project Operators and Authorized Project Designees may choose to use default methane destruction efficiencies \((DE_i)\) provided in appendix B or site-specific methane destruction efficiencies. Destruction technologies not listed in appendix B must use site-specific methane destruction efficiencies. Site-specific methane destruction efficiencies that are demonstrated to the satisfaction of the Executive Officer to be equally or more accurate than the default methane destruction efficiencies may be used upon written approval by the Executive Officer.

Equation 5.27: Methane Destroyed in Baseline

\[
MD_{B,i} = \sum_i (MM_{B,i} \times DE_i)
\]

Where,

- \(MD_{B,i}\) = Methane that would have been destroyed through use \(i\) by non-qualifying devices during the reporting period; calculated separately for each destruction device \((tMT\ CH_4)\)
- \(i\) = Use of methane (flaring, power generation, heat generation, production of transportation fuel, injection into natural gas pipeline, etc.) by non-qualifying destruction devices
- \(MM_{B,i}\) = Measured mMethane that would have been sent to non-qualifying devices for destruction through use \(i\) during the reporting period; calculated separately for each device \((tMT\ CH_4)\)
- \(DE_i\) = Efficiency of methane destruction device \(i\), either site-specific or from Appendix B (%)

With:

\[
MM_{B,i} = \sum_i (PSW_{B,i} \times C_{CH4} + PIB_{B,i} \times C_{CH4} + ECW_{B,i} \times C_{CH4} + AWR_B \times C_{CH4} + CDW_{B,i} \times C_{CH4}) \times 0.0423 \times 0.000454
\]

Where,

- \(PSW_{B,i}\) = Volume of MG from pre-mining surface wells that would have been sent to non-qualifying devices for destruction through use \(i\) during the reporting period in the baseline scenario \((scf)\)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(PIB_{B,i})</td>
<td>Volume of MG from pre-mining in-mine boreholes that would have been sent to non-qualifying devices for destruction through use (i) during the reporting period in the baseline scenario ((\text{scf}))</td>
</tr>
<tr>
<td>(ECW_{B,i})</td>
<td>Volume of MG from existing coalbed methane wells that would otherwise be shut-in and abandoned as a result of encroaching mining that would have been sent to non-qualifying devices for destruction through use (i) during the reporting period in the baseline scenario ((\text{scf}))</td>
</tr>
<tr>
<td>(AWR_{B,i})</td>
<td>Volume of MG from abandoned wells that are reactivated that would have been sent to non-qualifying devices for destruction through use (i) during the reporting period in the baseline scenario ((\text{scf}))</td>
</tr>
<tr>
<td>(CDW_{B,i})</td>
<td>Volume of MG from converted dewatering wells that would have been sent to non-qualifying devices for destruction through use (i) during the reporting period in the baseline scenario ((\text{scf}))</td>
</tr>
<tr>
<td>(C_{CH4})</td>
<td>Weighted average of measured methane concentration of mine gas captured from methane sources that would have been sent to non-qualifying destruction devices during the reporting period; calculated separately for each methane source ((\text{scf CH}_4/\text{scf CH}_4))</td>
</tr>
<tr>
<td>0.0423</td>
<td>Standard density of methane ((\text{lb CH}_4/\text{scf CH}_4))</td>
</tr>
<tr>
<td>0.000454</td>
<td>(\text{tMT CH}_4/\text{lb CH}_4)</td>
</tr>
</tbody>
</table>

With:

\[
C_{CH4} = \frac{\sum_t DV_t \times C_{CH4,t}}{\sum_t DV_t}
\]

Where,

\(C_{CH4,t} \) = Daily average methane concentration of mine gas captured from methane sources sent to a destruction device; calculated separately for each methane source \((\text{scf CH}_4/\text{scf})\)

\(DV_t \) = Daily volume of mine gas sent to a destruction device; calculated separately for each methane source \((\text{scf/day})\)

Methane concentrations and flow rates must be recorded every two minutes with averages calculated at least hourly. If the Offset Project Operator or Authorized Project Designee monitors and records data at a higher frequency, this data may be used within appropriate variables of the above equations to reflect the higher frequency of data collection.

If a thermal mass flow meter is used to monitor gas flow instead of a volumetric flow meter, the volume and density terms must be replaced by the monitored mass value and the methane concentration must be in mass percent.
Baseline emissions from the release of methane (BE_{MR}) must be quantified using Equation 5.28.

BE_{MR} must account for the total amount of methane actually destroyed by all qualifying and non-qualifying devices during the reporting period.

Emissions from the release of methane are only accounted for in the baseline during the reporting period(s) in which the emissions would have occurred (i.e., when the well is mined through). With the exception of pre-mining in-mine boreholes, all other methane sources must demonstrate that the well is mined through. For the purposes of this protocol, a well at an active surface mine is considered mined through when either of the following occurs:

1. The well is physically bisected by surface mining activities, such as excavation of overburden, drilling and blasting, and removal of the coal; or
2. The well produces elevated amounts of atmospheric gases (the percent concentration of nitrogen in mine gas, MG increases by five compared to baseline levels). A full gas analysis using a gas chromatograph must be completed by an ISO 17025 accredited lab or a lab that has been certified by an accreditation body conformant with ISO 17025 to perform test methods appropriate for atmospheric gas content analysis. To ensure that elevated nitrogen levels are the result of a well being mined through and not the result of a leak in the well, the gas analysis must show that oxygen levels did not increase by the same proportion as the nitrogen levels.

If using the first option (section 5.3.1(g)(1)) to demonstrate that a well is mined through, an up-to-date mine plan must be used to identify which wells were mined through and therefore eligible for baseline quantification in any given reporting period.

If the mine plan calls for mining past rather than through a borehole, SMM from that borehole is eligible for quantification in the baseline when the linear distance between the endpoint of the borehole and the working face that will pass nearest the endpoint of the borehole has reached an absolute minimum.
(e)(s) SMM that is still vented in the project scenario is not accounted for in the project emissions or baseline emissions, since it is vented in both scenarios.

Equation 5.28: Baseline Emissions from Release of Methane

\[
BE_{MR} = \sum_i [(PSW_{P,i} \times C_{CH4} - PSW_{B,i} \times C_{CH4}) + (PIB_{P,i} \times C_{CH4} - PIB_{B,i} \times C_{CH4}) + (ECW_{P,i} \times C_{CH4} - ECW_{B,i} \times C_{CH4}) + (AWR_{P,i} \times C_{CH4} - AWR_{B,i} \times C_{CH4}) + (CDW_{P,i} \times C_{CH4} - CDW_{B,i} \times C_{CH4})] \times 0.0423 \times 0.000454 \times GWP_{CH4}
\]

Where,

- \(BE_{MR}\) = Baseline emissions from release of methane into the atmosphere avoided by the project during the reporting period (tMT CO\(_2\)e)
- \(i\) = Use of methane (flaring, power generation, heat generation, production of transportation fuel, injection into natural gas pipeline, etc.) by all qualifying and non-qualifying destruction devices
- \(PSW_{P,i}\) = Volume of MG from pre-mining surface wells sent to qualifying and non-qualifying devices for destruction through use \(i\) during the reporting period. For qualifying devices, only the eligible amount per Equation 5.29 in accordance with sections 5.3.1(k), (l), and (m)(q) and (r) must be quantified (scf)
- \(PSW_{B,i}\) = Volume of MG from pre-mining surface wells that would have been sent to non-qualifying devices for destruction through use \(i\) during the reporting period in the baseline scenario (scf)
- \(PIB_{P,i}\) = Volume of MG from pre-mining in-mine boreholes sent to qualifying and non-qualifying devices for destruction through use \(i\) during the reporting period (scf)
- \(PIB_{B,i}\) = Volume of MG from pre-mining surface wells in-mine boreholes that would have been sent to non-qualifying devices for destruction through use \(i\) during the reporting period in the baseline scenario (scf)
- \(ECW_{P,i}\) = Volume of MG from existing coal bed methane wells that would otherwise be shut-in and abandoned as a result of encroaching mining sent to qualifying and non-qualifying devices for destruction through use \(i\) during the reporting period. For qualifying devices, only the eligible amount per Equation 5.30 in accordance with sections 5.3.1(k), (l), and (m)(q) and (r) must be quantified (scf)
- \(ECW_{B,i}\) = Volume of MG from existing coal bed methane wells that would otherwise be shut-in and abandoned as a result of encroaching mining that would have been sent to non-qualifying devices for destruction through use \(i\) during the reporting period in the baseline scenario (scf)
- \(AWR_{P,i}\) = Volume of MG from abandoned wells that are reactivated sent to qualifying and non-qualifying devices for destruction through use \(i\) during the reporting period. For qualifying devices, only the eligible
amount per Equation 5.31 in accordance with sections 5.3.1(k), (l), and (m)(q) and (r) must be quantified (scf)

AWR_{B,i}	Volume of MG from abandoned wells that are reactivated that would have been sent to non-qualifying devices for destruction through use i during the reporting period in the baseline scenario (scf)
CDW_{P,i}	Volume of MG from converted dewatering wells sent to qualifying and non-qualifying devices for destruction through use i during the reporting period. For qualifying devices, only the eligible amount per Equation 5.32 in accordance with sections 5.3.1(k), (l), and (m)(q) and (r) must be quantified (scf)
CDW_{B,i}	Volume of MG from converted dewatering wells that would have been sent to non-qualifying devices for destruction through use i during the reporting period in the baseline scenario (scf)
C_{CH4}	Weighted average of measured methane concentration of mine gas captured from methane sources sent to qualifying and non-qualifying destruction devices during the reporting period; calculated separately for each methane source (scf CH₄/scf)
0.0423	Standard Density of methane (lb CH₄/scf CH₄)
0.000454	tMT CH₄/lb CH₄
GWP_{CH4}	Global warming potential of methane (tMT CO₂e/tMT CH₄)

With:

| PSW_{P,i} | PSWe_i + PSWnq_i |
| Where, |
| PSWe_i | Volume of MG from pre-mining surface wells sent to qualifying devices for destruction through use i that is eligible for quantification in the reporting period; quantified using Equation 5.29 (scf) |
| PSWnq_i | Volume of MG from pre-mining surface wells sent to non-qualifying devices for destruction through use i during the reporting period (scf) |

And:

| ECW_{P,i} | ECWe_i + ECWnq_i |
| Where, |
| ECWe_i | Volume of MG from existing coal bed methane wells that would otherwise be shut-in and abandoned as a result of encroaching mining sent to qualifying devices for destruction through use i that is eligible for quantification in the reporting period; quantified using Equation 5.30 (scf) |
$ECW_{nqd,i} = \text{Volume of MG from existing coal bed methane wells that would otherwise be shut-in and abandoned as a result of encroaching mining sent to non-qualifying devices for destruction through use i during the reporting period (scf)}$

And:

$AWR_{P,i} = AWRe_i + AWR_{nqd,i}$

Where,

$AWRe_i = \text{Volume of MG from abandoned wells that are reactivated sent to qualifying devices for destruction through use i that is eligible for quantification in the reporting period; quantified using Equation 5.31. (scf)}$

$AWR_{nqd,i} = \text{Volume of MG from abandoned wells that are reactivated sent to non-qualifying devices for destruction through use i during the reporting period (scf)}$

And:

$CDW_{P,i} = CDWe_i + CDW_{nqd,i}$

Where,

$CDWe_i = \text{Volume of MG from converted dewatering wells sent to qualifying devices for destruction through use i that is eligible for quantification in the reporting period; quantified using Equation 5.32. (scf)}$

$CDW_{nqd,i} = \text{Volume of MG from converted dewatering wells sent to non-qualifying devices for destruction through use i during the reporting period (scf)}$

And:

\[
C_{CH4} = \frac{\sum_t DV_t \times C_{CH4,t}}{\sum_t DV_t}
\]

\[
C_{CH4} = \frac{\sum_t (DV_t \times C_{CH4,t})}{\sum_t DV_t}
\]

Where,

$C_{CH4,t} = \text{Daily average methane concentration of mine gas captured from methane sources sent to a destruction device; calculated separately for each methane source (scf CH}_4/\text{scf)}$

$DV_t = \text{Daily volume of mine gas sent to a destruction device; calculated separately for each methane source (scf/day)}$

Methane concentrations and flow rates must be recorded every two minutes with averages calculated at least hourly. If the Offset Project Operator or Authorized Project Operator fails to record the averages, the entire reporting period must be discarded.
Designee monitors and records data at a higher frequency, this data may be used within appropriate variables of the above equations to reflect the higher frequency of data collection.

If a thermal mass flow meter is used to monitor gas flow instead of a volumetric flow meter, the volume and density terms must be replaced by the monitored mass value and the methane concentration must be in mass percent.

The eligible amount of MG destroyed by qualifying devices must be determined by using Equations 5.29, 5.30, 5.31, and 5.32.

Equation 5.29: Eligible MG from Pre-mining Surface Wells

\[PSW_{ei} = PSW_{pre,i} + PSW_{post,i} \]

Where,

- \(PSW_{ei} \) = Volume of MG from pre-mining surface wells sent to qualifying devices for destruction through use \(i \) that is eligible for quantification in the reporting period (scf)
- \(i \) = Use of methane (flaring, power generation, heat generation, production of transportation fuel, injection into natural gas pipeline, etc.) by all qualifying destruction devices
- \(PSW_{pre,i} \) = Volume of MG sent to qualifying destruction devices, from the offset project commencement date through the end of the current crediting period, captured from pre-mining surface wells that were mined through during the current reporting period (scf)
- \(PSW_{post,i} \) = Volume of MG sent to qualifying destruction devices in the current reporting period captured from pre-mining surface wells that were mined through during earlier reporting periods (scf)

Equation 5.30: Eligible MG from Existing Coal Bed Methane Wells that Would Otherwise Be Shut-in and Abandoned as a Result of Encroaching Mining

\[ECW_{ei} = ECW_{pre,i} + ECW_{post,i} \]

Where,

- \(ECW_{ei} \) = Volume of MG from existing coal bed methane wells that would otherwise be shut-in and abandoned as a result of encroaching mining sent to qualifying devices for destruction through use \(i \) that is eligible for quantification in the reporting period (scf)
- \(i \) = Use of methane (flaring, power generation, heat generation, production of transportation fuel, injection into natural gas pipeline, etc.) by all qualifying destruction devices
\[ECW_{\text{pre},i} = \text{Volume of MG sent to qualifying destruction devices, from the offset project commencement date to the beginning of the crediting period through the end of the current reporting period, captured from existing coal bed methane wells that would otherwise be shut-in and abandoned as a result of encroaching mining that were mined through during the current reporting period (scf)} \]

\[ECW_{\text{post},i} = \text{Volume of MG sent to qualifying destruction devices in the current reporting period captured from existing coal bed methane wells that would otherwise be shut-in and abandoned as a result of encroaching mining that were mined through during earlier reporting periods (scf)} \]

Equation 5.31: Eligible MG from Abandoned Wells that are Reactivated

\[AWRe_{i} = AWE_{\text{pre},i} + AWRe_{\text{pre},i} + AWRe_{\text{post},i} \]

Where,

\[AWRe_{i} = \text{Volume of MG from abandoned wells that are reactivated sent to qualifying devices for destruction through use } i \text{ that is eligible for quantification in the reporting period using for use in Equation 5.28 (scf)} \]

\[i = \text{Use of methane (flaring, power generation, heat generation, production of transportation fuel, injection into natural gas pipeline, etc.) by all qualifying destruction devices} \]

\[AWRe_{\text{pre},i} = \text{Volume of MG sent to qualifying destruction devices, from the offset project commencement date to the beginning of the crediting period through the end of the current reporting period, captured from abandoned wells that are reactivated that were mined through during the current reporting period (scf)} \]

\[AWRe_{\text{post},i} = \text{Volume of MG sent to qualifying destruction devices in the current reporting period captured from abandoned wells that are reactivated that were mined through during earlier reporting periods (scf)} \]

Equation 5.32: Eligible MG from Converted Dewatering Wells that are Reactivated

\[CDWe_{i} = CDW_{\text{pre},i} + CDW_{\text{post},i} \]

Where,

\[CDWe_{i} = \text{Volume of MG from converted dewatering wells sent to qualifying devices for destruction through use } i \text{ that is eligible for quantification in the reporting period using for use in Equation 5.28 (scf)} \]

\[i = \text{Use of methane (flaring, power generation, heat generation, production of transportation fuel, injection into natural gas pipeline, etc.) by all qualifying destruction devices} \]
\[CDW_{\text{pre},i} = \text{Volume of MG sent to qualifying destruction devices, from the offset project commencement date beginning of the crediting period through the end of the current reporting period, captured from converted dewatering wells that were mined through during the current reporting period (scf)} \]

\[CDW_{\text{post},i} = \text{Volume of MG sent to qualifying destruction devices in the current reporting period captured from converted dewatering wells that were mined through during earlier reporting periods (scf)} \]

§ 5.3.2 Quantifying Project Emissions.
(a) Project emissions must be quantified on an annual basis over a consecutive twelve month period.

(b) Project emissions for a reporting period (PE) must be quantified by summing the emissions for all SSRs identified as included in the project in Table 4.3 and using Equation 5.33.

(c) SMM that is still vented in the project scenario is not accounted for in the project emissions or baseline emissions, since it is vented in both scenarios.

Equation 5.33: Project Emissions
\[PE = PE_{EC} + PE_{MD} + PE_{UM} \]

Where,
- \(PE \) = Project emissions during the reporting period (tMT CO\text{2)e})
- \(PE_{EC} \) = Project emissions from energy consumed to capture and destroy methane during the reporting period (tMT CO\text{2)e})
- \(PE_{MD} \) = Project emissions from destruction of methane during the reporting period (tMT CO\text{2)e})
- \(PE_{UM} \) = Project emissions from uncombusted methane during the reporting period (tMT CO\text{2)e})

(d) If the project uses fossil fuel or grid electricity to power additional equipment required for project activities (e.g., drilling and completing additional wells or boreholes, capturing and destroying mine gas, transporting mine gas, etc.), the resulting CO\text{2} emissions from the energy consumed to capture and destroy methane (\(PE_{EC} \)) must be quantified using Equation 5.34.

(e) If the total electricity generated by project activities is greater than the additional electricity consumed for the capture and destruction of methane, then the \(CONSELE^{ELEC} = 0 \) term may be omitted from Equation 5.34.
Equation 5.34: Project Emissions from Energy Consumed to Capture and Destroy Methane

\[
PE_{EC} = (CONSELEC \times CEF_{ELEC}) + \left(\frac{CONSF_F \times CEF_{FF}}{1000}\right)
\]

Where,

- \(PE_{EC}\) = Project emissions from energy consumed to capture and destroy methane during the reporting period (tMT CO\(_2\)e)
- \(CONSELEC\) = Additional electricity consumption for the capture and destruction of methane during the reporting period (MWh)
- \(CEF_{ELEC}\) = CO\(_2\) emission factor of electricity used from Appendix A (tMT CO\(_2\)e/MWh)
- \(CONSF:\) = Additional heat consumption for the capture and destruction of methane during the reporting period (volume)
- \(CEF_{HEAT}\) = CO\(_2\) emission factor of heat used from Appendix A (kg CO\(_2\)/volume)
- \(CONSF_F\) = Additional fossil fuel consumption for the capture and destruction of methane during the reporting period (volume)
- \(CEF_{FF}\) = CO\(_2\) emission factor of fossil fuel used from Appendix A (kg CO\(_2\)/volume)
- 1/1000 = Conversion of kg to metric tons

(f) Project emissions from the destruction of methane (PE\(_{MD}\)) must be quantified using Equations 5.35 and 5.36.

(g) Project emissions must include the CO\(_2\) emissions resulting from the destruction of SMM\(_{all\ MG}\) that took place during the reporting period regardless of whether or not the well is mined through by the end of the reporting period.

Equation 5.35: Project Emissions from Destruction of SMM

\[
PE_{MD} = \sum_i MD_{P,i} \times CEF_{CH4}
\]

Where,

- \(PE_{MD}\) = Project emissions from destruction of methane during the reporting period (tMT CO\(_2\)e)
- \(MD_{P,i}\) = Methane destroyed through use \(i\) by qualifying and non-qualifying destruction devices during the reporting period (tMT CH\(_4\))
(h) The amount of mine methane destroyed \((MD_i)\) must be quantified using Equation 5.36.

(i) Offset Project Operators and Authorized Project Designees may choose to use default methane destruction efficiencies \((DE_i)\) provided in Appendix B or site-specific methane destruction efficiencies. Destruction technologies not listed in Appendix B must use site-specific methane destruction efficiencies. Site-specific methane destruction efficiencies that are demonstrated to the satisfaction of the Executive Officer to be equally or more accurate than the default methane destruction efficiencies may be used upon written approval by the Executive Officer.

Equation 5.36: Methane Destroyed

\[
MDP_j = \sum_i (MMP_{i} \times DE_i)
\]

Where,

- \(MDP_j\) = Methane destroyed by through use \(i\) by qualifying and non-qualifying devices during the reporting period; calculated separately for each destruction device \(\text{tMT CH}_4\)
- \(i\) = Use of methane (flaring, power generation, heat generation, production of transportation fuel, injection into natural gas pipeline, etc.) by all qualifying and non-qualifying destruction devices
- \(MMP_{i}\) = Methane measured sent to qualifying and non-qualifying devices for destruction through use \(i\) during the reporting period corrected to standard conditions, if applicable, for pressure and temperature; calculated separately for each device \(\text{tMT CH}_4\)
- \(DE_i\) = Efficiency of methane destruction device \(i\), either site-specific or from Appendix B (%)

With:

\[
MMP_{i} = \sum_i (PSWP_{all,i} \times C_{CH4} + PIBP_{i} \times C_{CH4} + ECWP_{all,i} \times C_{CH4} + AWRP_{all,i} \times C_{CH4} \times CDWP_{all,i} \times C_{CH4}) \times 0.0423 \times 0.000454
\]

Where,
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$PSW_{P,all,i}$</td>
<td>Volume of MG from pre-mining surface wells sent to qualifying and non-qualifying devices for destruction through use i during the reporting period. For qualifying devices, all MG, whether from a mined through well or not, must be quantified (scf)</td>
</tr>
<tr>
<td>$PIB_{P,i}$</td>
<td>Volume of MG from pre-mining in-mine boreholes sent to qualifying and non-qualifying devices for destruction through use i during the reporting period (scf)</td>
</tr>
<tr>
<td>$ECW_{P,all,i}$</td>
<td>Volume of MG from existing coal bed methane wells that would otherwise be shut-in and abandoned as a result of encroaching mining sent to qualifying and non-qualifying devices for destruction through use i during the reporting period. For qualifying devices, all MG, whether from a mined through well or not, must be quantified (scf)</td>
</tr>
<tr>
<td>$AWR_{P,all,i}$</td>
<td>Volume of MG from abandoned wells that are reactivated sent to qualifying and non-qualifying devices for destruction through use i during the reporting period. For qualifying devices, all MG, whether from a mined through well or not, must be quantified (scf)</td>
</tr>
<tr>
<td>$CDW_{P,all,i}$</td>
<td>Volume of MG from converted dewatering wells sent to qualifying and non-qualifying devices for destruction through use i during the reporting period. For qualifying devices, all MG, whether from a mined through well or not, must be quantified (scf)</td>
</tr>
<tr>
<td>C_{CH4}</td>
<td>Weighted average of measured methane concentration of mine gas captured from methane sources sent to qualifying and non-qualifying destruction devices during the reporting period; calculated separately for each methane source (scf CH₄/scf)</td>
</tr>
<tr>
<td>0.0423</td>
<td>Standard Density of methane (lb CH₄/scf CH₄)</td>
</tr>
<tr>
<td>0.000454</td>
<td>tMT CH₄/lb CH₄</td>
</tr>
</tbody>
</table>

With:

\[
C_{CH4} = \frac{\sum_t DV_t \times C_{CH4,t}}{\sum_t DV_t}
\]

\[
C_{CH4,t} = \frac{\sum_t (DV_t \times C_{CH4,t})}{\sum_t DV_t}
\]

Where,

\[
C_{CH4,t} = \text{Daily average methane concentration of mine gas captured from methane sources sent to a destruction device; calculated separately for each methane source (scf CH₄/scf)}
\]

\[
DV_t = \text{Daily volume of mine gas sent to a destruction device; calculated separately for each methane source (scf/day)}
\]
Methane concentrations and flow rates must be recorded every two minutes with averages calculated at least hourly. If the Offset Project Operator or Authorized Project Designee monitors and records data at a higher frequency, this data may be used within appropriate variables of the above equations to reflect the higher frequency of data collection.

If a thermal-mass flow meter is used to monitor gas flow instead of a volumetric flow meter, the volume and density terms must be replaced by the monitored mass value and the methane concentration must be in mass percent.

(j) Project emissions from uncombusted methane (\(PE_{UM}\)) must be quantified using Equation 5.37.

(k) Project emission from uncombusted methane must include emissions from all MG sent to destruction devices during the reporting period regardless of whether or not the well is mined through by the end of the reporting period.

(k)(l) Offset Project Operators and Authorized Project Designees may choose to use default methane destruction efficiencies (\(DE_i\)) provided in Appendix B or site-specific methane destruction efficiencies. Destruction technologies not listed in appendix B must use site-specific methane destruction efficiencies. Site-specific methane destruction efficiencies that are demonstrated to the satisfaction of the Executive Officer to be equally or more accurate than the default methane destruction efficiencies may be used upon written approval by the Executive Officer.

Equation 5.37: Project Emissions from Uncombusted Methane Emissions

\[
PE_{UM} = \sum_i [MM_{P,i} \times (1 - DE_i)] \times GWP_{CH4}
\]

Where,

\(PE_{UM}\) = Project emissions from uncombusted methane during the reporting period (tMT CO\(_2\)e)

\(i\) = Use of methane (flaring, power generation, heat generation, production of transportation fuel, injection into natural gas pipeline, etc.) by all qualifying and non-qualifying destruction devices

\(MM_{P,i}\) = Methane measured sent to qualifying and non-qualifying devices for destruction through use \(i\) during the reporting period; calculated separately for each destruction device (tMT CH\(_4\))

\(DE_i\) = Efficiency of methane destruction device \(i\), either site-specific or from Appendix B (%)
\[GWP_{CH_4} = \text{Global warming potential of methane (tMT CO}_2\text{e/tMT CH}_4) \]

With:

\[MM_{P,i} = \sum_i (PSW_{P,all,i} \times C_{CH_4} + PIB_{P,i} \times C_{CH_4} + ECW_{P,all,i} \times C_{CH_4} + AWR_{P,all,i} \times C_{CH_4} \times CDW_{P,all,i} \times C_{CH_4}) \times 0.0423 \times 0.000454 \]

Where,

- \(PSW_{P,all,i} \): Volume of MG from pre-mining surface wells sent to qualifying and non-qualifying devices for destruction through use \(i \) during the reporting period. For qualifying devices, all MG, whether from a mined through well or not, must be quantified (scf).

- \(PIB_{P,i} \): Volume of MG from pre-mining in-mine boreholes sent to qualifying and non-qualifying devices for destruction through use \(i \) during the reporting period (scf).

- \(ECW_{P,all,i} \): Volume of MG from existing coal bed methane wells that would otherwise be shut-in and abandoned as a result of encroaching mining sent to qualifying and non-qualifying devices for destruction through use \(i \) during the reporting period. For qualifying devices, all MG, whether from a mined through well or not, must be quantified (scf).

- \(AWR_{P,all,i} \): Volume of MG from abandoned wells that are reactivated sent to qualifying and non-qualifying devices for destruction through use \(i \) during the reporting period. For qualifying devices, all MG, whether from a mined through well or not, must be quantified (scf).

- \(CDW_{P,all,i} \): Volume of MG from converted dewatering wells sent to qualifying and non-qualifying devices for destruction through use \(i \) during the reporting period. For qualifying devices, all MG, whether from a mined through well or not, must be quantified (scf).

- \(C_{CH_4} \): Weighted average of measured methane concentration of mine gas captured from methane sources sent to qualifying and non-qualifying destruction devices during the reporting period; calculated separately for each methane source (scf CH\(_4\)/scf).

- 0.0423: Standard density of methane (lb CH\(_4\)/scf CH\(_4\)).

- 0.000454: tMT CH\(_4\)/lb CH\(_4\).

With:

\[C_{CH_4} = \frac{\sum_t DV_t \times C_{CH_4,t}}{\sum_t DV_t} \]

\[C_{CH_4} = \frac{\sum_t (DV_t \times C_{CH_4,t})}{\sum_t DV_t} \]
Where,

\[C_{CH4,t} = \text{Daily average methane concentration of mine gas captured from methane sources sent to a destruction device; calculated separately for each methane source (scf CH}_4/\text{scf)} \]

\[DV_t = \text{Daily volume of mine gas sent to a destruction device; calculated separately for each methane source (scf/day)} \]

Methane concentrations and flow rates must be recorded every two minutes with averages calculated at least hourly. If the Offset Project Operator or Authorized Project Designee monitors and records data at a higher frequency, this data may be used within appropriate variables of the above equations to reflect the higher frequency of data collection.

If a thermal-mass flow meter is used to monitor gas flow instead of a volumetric flow meter, the volume and density terms must be replaced by the monitored mass value and the methane concentration must be in mass percent.

\[(l)(m)\] If gas flow metering equipment does not internally correct for temperature and pressure provides an actual flow rate or volume instead of a flow rate or volume adjusted to standard conditions, use Equation 5.38 to determine standardize the amount of mine gas \(MG \) sent to each qualifying and non-qualifying device during the reporting period.

Equation 5.38: MG Flow Rate or Volume Corrected Adjusted for Temperature and Pressure

\[MG_{\text{corrected},i,y} = MG_{\text{meas},i,y} \times \frac{520}{T_{MG,y}} \times \frac{P_{MG,y}}{1} \]

\[MG_{\text{adjusted},y} = MG_{\text{actual},y} \times \frac{519.67}{T_{MG,y}} \times \frac{P_{MG,y}}{1} \]

Where,

\(MG_{\text{corrected adjusted},i,y} \) = Corrected Average flow rate or total volume of MG collected for the sent to a destruction device during time interval \(y \) at utilization type \(i \), adjusted to 60°F and 1 atm standard conditions (scf/unit of time)(scfm)

\(MG_{\text{meas actual},i,y} \) = Measured average flow rate or total volume of MG collected for the sent to a destruction device during time interval \(y \) at utilization type \(i \) (scf/unit of time)(acfm)

\(T_{MG,y} \) = Measured absolute temperature of the MG for the time interval \(y \), °R=°F_+460_459.67 (°R)
\(P_{MG,y} \) = Measured absolute pressure of the MG for the time interval \(y \) (atm)

§-5.4. Abandoned Underground Mine Methane Recovery Activities.

(a) GHG emission reductions for a reporting period (ER) must be quantified by subtracting the project emissions for that reporting period (PE) from the baseline emissions for that reporting period (BE) and applying an uncertainty deduction (UD) using Equation 5.39.

(b) Abandoned underground mine methane recovery activities that meet the following conditions are not subject to an uncertainty deduction and should calculate GHG emission reductions for a reporting period (ER) using an uncertainty deduction (UD) equal to 1:

1. The project uses hyperbolic emission rate decline curve coefficients derived from mine-specific data measured from pre-existing wells or boreholes open to the atmosphere according to the provisions of section 5.4.1(e)(u); or
2. The project extracts methane exclusively from mines that utilized methane drainage systems when active.

Equation 5.39: GHG Emission Reductions

\[
ER = (BE - PE) \times UD
\]

Where,

- \(ER \) = Emission reductions achieved by the project during the reporting period (tMT CO\(_2\)e)
- \(BE \) = Baseline emissions during the reporting period (tMT CO\(_2\)e)
- \(PE \) = Project emissions during the reporting period (tMT CO\(_2\)e)
- \(UD \) = Uncertainty deduction; UD = 0.8 if using default hyperbolic emission rate decline curve coefficients and the mine did not utilize a methane drainage system when active, UD = 1 if using default hyperbolic emission rate decline curve coefficients and the abandoned mine utilized a methane drainage system when active, UD = 1 if using hyperbolic emission rate decline curve coefficients derived from measured data from pre-existing wells or boreholes open to the atmosphere
§ 5.4.1 Quantifying Baseline Emissions.
(a) Baseline emissions for a reporting period (BE) must be estimated by summing the baseline emissions for all SSRs identified as included in the baseline in Table 4.4 and using Equation 5.40.
(b) The emission reductions in any given reporting period must be equal to or less than the baseline emissions for that reporting period.

Equation 5.40: Baseline Emissions

\[BE = BE_{MD} + BE_{MR} \]

Where,

- **BE** = Baseline emissions during the reporting period (tMT CO₂e)
- **BE_{MD}** = Baseline emissions from destruction of methane during the reporting period (tMT CO₂e)
- **BE_{MR}** = Baseline emissions from release of methane into the atmosphere avoided by the project during the reporting period (tMT CO₂e)

(c) Baseline emissions from the destruction of AMM (BE_{MD}) must be quantified using Equations 5.41 and 5.42.
(d) BE_{MD} must include the estimated CO₂ emissions from the destruction of AMM in non-qualifying devices.
(e) Mine gas (MG) can originate from four distinct sources for abandoned underground mine methane recovery activities: pre-mining surface wells drilled into the mine during active mining operations, pre-mining in-mine boreholes drilled into the mine during active mining operations, post-mining gob wells drilled into the mine during active mining operations, and newly drilled surface wells. MG from these sources must be measured and accounted for individually per the equations in this section.
(f) For each eligible methane source, the volume or mass of MG that would have been sent to a non-qualifying device for destruction during the reporting period in the baseline must be the determined by calculating and comparing:

(1) The volume or mass of MG captured and sent to non-qualifying devices during the reporting period, adjusted for temperature and pressure using Equation 5.51, if applicable; and
(2) The volume of MG captured and sent to non-qualifying devices during the three-year period prior to offset project commencement (or during the length of time the devices are operational, if less than three years), adjusted for temperature and pressure using Equation 5.51, if applicable and averaged according to the length of the reporting period.

(3) The volume or mass of MG sent to non-qualifying devices during the time period a law, regulation, or legally binding mandate, in place for less than three years prior to offset project commencement, was in effect, adjusted for temperature and pressure using Equation 5.51, if applicable, and averaged according to the length of the reporting period.

(g) For each methane source, the largest of the three above quantities must be used in Equation 5.42.

(h) If using a quantity from calculation (2) or (3) above and the project does not have data on the concentration of the methane to use in Equation 5.42, the highest single-day average methane concentration measured for that methane source during the reporting period must be used in its place.

(i) For the purpose of baseline quantification, only non-qualifying devices that were operating during the year prior to offset project commencement should be taken into account.

(e) If there is no destruction of methane in the baseline, then BE$_{MD}$ = 0.

Equation 5.41: Baseline Emissions from Destruction of Methane

$$BE_{MD} = \sum_i MD_{B,i} \times CEF_{CH4}$$

Where,

- BE_{MD} = Baseline emissions from destruction of methane during the reporting period (tMT CO$_2$e)
- i = Use of methane (flaring, power generation, heat generation, production of transportation fuel, injection into natural gas pipeline, etc.) by non-qualifying destruction devices
- $MD_{B,i}$ = Methane that would have been destroyed through use i by non-qualifying devices through use i during the reporting period (tMT CH$_4$)
- CEF_{CH4} = CO$_2$ emission factor for combusted methane (2.752.744 tMT CO$_2$e/tMT CH$_4$)
(f) The amount of mine methane that would have been destroyed by non-qualifying devices \((MD_{B,i}) \) must be quantified using equation 5.42.

(g) MG can originate from four distinct sources for abandoned underground mine methane recovery activities: pre-mining surface wells drilled into the mine during active mining operations, pre-mining in-mine boreholes drilled into the mine during active mining operations, post-mining gob wells drilled into the mine during active mining operations, and newly drilled surface wells. MG from these sources must be measured and accounted for individually per the equations in this section.

(h) For the purpose of baseline quantification, only non-qualifying destruction devices that were operating during the year prior to offset project commencement should be taken into account.

(i) For each eligible methane source, the volume or mass of MG that would have been sent to a non-qualifying device for destruction during the reporting period in the baseline must be determined by calculating and comparing:

1. The volume or mass of MG sent to non-qualifying destruction devices during the current reporting period, adjusted for temperature and pressure using equation 5.50, if applicable;

2. The volume or mass of MG sent to non-qualifying destruction devices during the three-year period prior to offset project commencement (or during the length of time the devices are operational, if less than three years), adjusted for temperature and pressure using equation 5.50, if applicable and averaged according to the length of the reporting period;

and

3. The volume or mass of MG sent to non-qualifying destruction devices during the time period a law, regulation, or legally binding mandate, in place for less than three years prior to offset project commencement, was in effect, adjusted for temperature and pressure using equation 5.50, if applicable, and averaged according to the length of the reporting period.

(j) For each methane source, the largest of the three quantities determined in sections 5.4.1(i)(1)-(3) must be used for volume of MG that would have been
sent to a non-qualifying device for destruction through use \(i\) during the reporting period in the baseline scenario (\(PSW_{B,i}, PIB_{B,i}, PGW_{B,i},\) and \(NSW_{B,i}\)) in equation 5.42.

\((k)\) If using a quantity for \(PSW_{B,i}, PIB_{B,i}, PGW_{B,i},\) and \(NSW_{B,i}\) determined by section 5.4.1(i)(1), data for daily volume of mine gas (\(DV_{i}\)) and methane concentration of mine gas (\(C_{CH4,i}\)) must be monitored for the non-qualifying destruction devices and used in equation 5.42.

\((l)\) If using a quantity for \(PSW_{B,i}, PIB_{B,i}, PGW_{B,i},\) and \(NSW_{B,i}\) determined by section 5.4.1(i)(2) or 5.4.1(i)(3), historical data for daily volume of mine gas (\(DV_{i}\)) and methane concentration of mine gas (\(C_{CH4,i}\)) must be used in equation 5.42, if available.

\((m)\) If using a quantity for \(PSW_{B,i}, PIB_{B,i}, PGW_{B,i},\) and \(NSW_{B,i}\) determined by section 5.4.1(i)(2) or 5.4.1(i)(3), and historical data for daily volume of mine gas (\(DV_{i}\)) is not available, the highest single day volume of mine gas sent to any qualifying or non-qualifying destruction device during the reporting period must be used in place of historical data.

\((n)\) If using a quantity for \(PSW_{B,i}, PIB_{B,i}, PGW_{B,i},\) and \(NSW_{B,i}\) determined by section 5.4.1(i)(2) or 5.4.1(i)(3), and historical data for methane concentration of mine gas (\(C_{CH4,i}\)) is not available, the highest single-hour average methane concentration during the reporting period must be used in place of historical data.

\((o)\) Offset Project Operators and Authorized Project Designees may choose to use default methane destruction efficiencies (\(DE_{i}\)) provided in Appendix B or site-specific methane destruction efficiencies. Destruction technologies not listed in appendix B must use site-specific methane destruction efficiencies. Site-specific methane destruction efficiencies that are demonstrated to the satisfaction of the Executive Officer to be equally or more accurate than the default methane destruction efficiencies may be used upon written approval by the Executive Officer.

Equation 5.42: Methane Destroyed in Baseline

\[
MD_{B,i} = \sum_{i} (MM_{B,i} \times DE_{i})
\]
Where,

- \(MD_{B,i} \) = Methane that would have been destroyed by through use \(i \) by non-qualifying devices during the reporting period; calculated separately for each destruction device (tMT CH\(_4\))
- \(i \) = Use of methane (flaring, power generation, heat generation, production of transportation fuel, injection into natural gas pipeline, etc.) by non-qualifying destruction devices
- \(MM_{B,i} \) = Methane measured sent to non-qualifying devices for destruction through use \(i \) during the reporting period corrected to standard conditions, if applicable, for pressure and temperature; calculated separately for each device (tMT CH\(_4\))
- \(DE_i \) = Efficiency of methane destruction device \(i \), either site-specific or from Appendix B (%)

With:

\[
MM_{B,i} = \sum_i (PSW_{B,i} \times C_{CH4} + PIB_{B,i} \times C_{CH4} + PGW_{B,i} \times C_{CH4} \times NSW_{B,i} \times C_{CH4}) \times 0.0423 \times 0.000454
\]

Where,

- \(PSW_{B,i} \) = Volume of MG from pre-mining surface wells that would have been sent to non-qualifying devices for destruction through use \(i \) during the reporting period (scf)
- \(PIB_{B,i} \) = Volume of MG from pre-mining in-mine boreholes that would have been sent to non-qualifying devices for destruction through use \(i \) during the reporting period (scf)
- \(PGW_{B,i} \) = Volume of MG from post-mining gob wells that would have been sent to non-qualifying devices for destruction through use \(i \) during the reporting period (scf)
- \(NSW_{B,i} \) = Volume of MG from newly drilled surface wells that would have been sent to non-qualifying devices for destruction through use \(i \) during the reporting period (scf)
- \(C_{CH4} \) = Weighted average of measured methane concentration of mine gas captured from methane source that would have been sent to non-qualifying destruction devices during the reporting period; calculated separately for each methane source (scf CH\(_4\)/scf)
- 0.0423 = Standard Density of methane (lb CH\(_4\)/scf CH\(_4\))
- 0.000454 = tMT CH\(_4\)/lb CH\(_4\)

With:
\[C_{CH4} = \frac{\sum_t \Delta V_t \times C_{CH4,t}}{\sum_t \Delta V_t} \]

Where,

\(C_{CH4,t} \) = Daily average methane concentration of mine gas captured from methane sources sent to a destruction device; calculated separately for each methane source (scf CH4/scf)

\(\Delta V_t \) = Daily volume of mine gas sent to a destruction device; calculated separately for each methane source (scf/day)

Methane concentrations and flow rates must be recorded every two minutes with averages calculated at least hourly. If the Offset Project Operator or Authorized Project Designee monitors and records data at a higher frequency, this data may be used within appropriate variables of the above equations to reflect the higher frequency of data collection.

If a thermal mass flow meter is used to monitor gas flow instead of a volumetric flow meter, the volume and density terms must be replaced by the monitored mass value and the methane concentration must be in mass percent.

(m)(p) Baseline emissions from the release of methane (BE\(_{MR}\)) must be quantified using Equations 5.43 and 5.44. Calculations include the application of a hyperbolic emissions rate decline curve. The function is directly related to the gassiness of the mine, which is reflective of physical parameters of the coal mine such as the mine size, gas content of the coal, permeability of the coal to the flow of gas.

(n)(q) The decline curve estimates the emission rate of an abandoned mine over time by taking into account the time elapsed since mine closure, the average methane emission rate calculated using available data collected by MSHA over the life of the mine, and whether the mine is sealed or venting. The decline curve for a given mine is initialized at the date of abandonment and extrapolated through the crediting period.

(o)(r) The amount of AMM released in the baseline scenarios (tMT CH\(_4\)) must be determined by calculating and comparing:

1. The emissions of methane for that reporting period calculated by the decline curve using Equation 5.44; and
The quantity total amount of measured methane destroyed by sent to all qualifying and non-qualifying devices during the reporting period (MMIP,i) calculated using Equation 5.4948.

The lesser of the two above quantities must be used in Equation 5.43.

AMM that is still vented in the project scenario is not accounted for in the project emissions or baseline emissions, since it is vented in both scenarios.

Equation 5.43: Baseline Emissions from Release of Methane

\[
BE_{MR} = \min \left(AMM_{DC}, \sum_i MD_{P,i} - \sum_i MM_{P,i} \right) \times GWP_{CH4}
\]

Where,

- \(BE_{MR} \) = Baseline emissions from release of methane into the atmosphere avoided by the project during the reporting period (tMT CO2e)
- \(i \) = Use of methane (flaring, power generation, heat generation, production of transportation fuel, injection into natural gas pipeline, etc.) by all qualifying and non-qualifying destruction devices
- \(AMM_{DC} \) = Emissions of methane during the reporting period as calculated by the decline curve (tMT CH4)
- \(MD_{P,i} \) = Measured methane sent to all qualifying and non-qualifying devices for destruction through use i during the reporting period (tMT CH4)
- \(MM_{P,i} \) = Measured methane that would have been sent to non-qualifying devices for destruction through use i during the reporting period (tMT CH4)
- \(GWP_{CH4} \) = Global warming potential of methane (tMT CO2e/tMT CH4)

Equation 5.44: Methane Emissions Derived from the Hyperbolic Emission Rate Decline Curve

\[
AMM_{DC} = ER_{AMM} \times S \times (1 + b \times D_i \times t) \times \left(\frac{1}{b} \right) \times \frac{RP_{days}}{RP_{days}} \times 0.0423 \times 0.000454
\]

Where,

- \(AMM_{DC} \) = Emissions of methane from the decline curve during the reporting period (tMT CH4)
- \(ER_{AMM} \) = Average ventilation air methane emission rate over the life of the mine (mMscf/d)
\(S\) = Default effective degree of sealing; \(S = 1\) for venting mines and 0.5 for sealed mines

\(b\) = Dimensionless hyperbolic exponent

\(D_i\) = Initial decline rate (1/day)

\(t\) = Time elapsed from the date of mine closure to midpoint of the reporting period (days)

\(RP_{days}\) = Days in reporting period

0.0423 = Standard density of methane (lb CH\(_4\)/scf CH\(_4\))

0.000454 = tMT CH\(_4\)/lb CH\(_4\)

\((b)(t)\) The decline curve relies upon hyperbolic emission rate decline curve coefficients. Offset Project Operators or Authorized Project Designees may elect to:

1. Use the default hyperbolic emission rate decline curve coefficients presented in Table 5.1 based upon whether the mine is venting or sealed; or

Table 5.1: Default Hyperbolic Decline Curve Coefficients

<table>
<thead>
<tr>
<th>Variable</th>
<th>Venting</th>
<th>Sealed</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>1.886581</td>
<td>2.016746</td>
</tr>
<tr>
<td>(D_i) (1/day)</td>
<td>0.003519</td>
<td>0.000835</td>
</tr>
</tbody>
</table>

2. Use hyperbolic emission rate decline curve coefficients derived from measured data from pre-existing wells or boreholes open to the atmosphere that are demonstrated to the satisfaction of the Executive Officer to be equally or more accurate than the default hyperbolic emission rate decline curve coefficients upon written approval by the Executive Officer. If natural gas seeps are present, an Offset Project Operator or Authorized Project Designee may also include measured data from those emissions.

Table 5.1: Default Hyperbolic Decline Curve Coefficients

<table>
<thead>
<tr>
<th>Variable</th>
<th>Venting</th>
<th>Sealed</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>1.886581</td>
<td>2.016746</td>
</tr>
<tr>
<td>(D_i) (1/day)</td>
<td>0.003519</td>
<td>0.000835</td>
</tr>
</tbody>
</table>
To derive hyperbolic emission rate decline curve coefficients using measured data from pre-existing wells or boreholes open to the atmosphere and natural gas seeps, an Offset Project Operator or Authorized Project Designee must do the following:

(1) Obtain average methane emission rate calculated using available data collected by MSHA over the life of the mine.

(2) After mine closure, three parameters must be monitored:
 (A) MG flow rates;
 (B) local barometric pressure; and
 (C) methane concentration of MG.

(3) Measurements must be of natural flow only with no assist from vacuum pumps or compressors.

(4) If gas flow metering equipment does not internally correct for temperature and pressure provides an actual flow rate instead of a flow rate adjusted to standard conditions, apply Equation 5.45 to standardize the flow rate of mine gas MG venting from pre-existing wells or boreholes open to the atmosphere and natural gas seeps.

Equation 5.45: Emissions Rate Corrected for Temperature and Pressure

\[
ER_{\text{corrected},y} = ER_{\text{meas},y} \times \frac{520}{T_{MG,y}} \times \frac{P_{MG,y}}{1}
\]

Where:

- \(ER_{\text{corrected},y}\) = Emissions rate of MG venting from pre-existing wells or boreholes open to the atmosphere during time interval \(y\) adjusted to 60°F and 1 atm (scf/unit of time)
- \(ER_{\text{meas},y}\) = Measured emission rate of MG venting from pre-existing wells or boreholes open to the atmosphere during time interval \(y\) (scf/unit of time)
- \(T_{MG,y}\) = Measured temperature of the MG for the time interval \(y\), °R=°F+460 (°R)
- \(P_{MG,y}\) = Measured pressure of the MG for the time interval \(y\) (atm)
(5) The monitored data must be used to develop a correlation between barometric pressure and methane flow rate. Annual average barometric pressure at the site must then be used to normalize the annual methane flow rate.

(6) This normalized flow rate must then be plotted against the time since mine closure in order to derive the hyperbolic emission rate decline curve by fitting the data to a curve in the form of Equation 5.44.

§5.4.2. Quantifying Project Emissions.
(a) Project emissions must be quantified on an annual basis over a consecutive twelve month period.

(b) Project emissions for a reporting period (PE) must be quantified by summing the emissions for all SSRs identified as included in the project in Table 4.4 and using Equation 5.4645.

(c) AMM that is still vented in the project scenario is not accounted for in the project emissions or baseline emissions, since it is vented in both scenarios.

Equation 5.4645: Project Emissions

\[PE = PEEC + PEMD + PEUM \]

Where,

- \(PE \) = Project emissions during the reporting period (tMT CO\(_2\)e)
- \(PEEC \) = Project emissions from energy consumed to capture and destroy methane during the reporting period (tMT CO\(_2\)e)
- \(PEMD \) = Project emissions from destruction of methane during the reporting period (tMT CO\(_2\)e)
- \(PEUM \) = Project emissions from uncombusted methane during the reporting period (tMT CO\(_2\)e)

(d) If the project uses fossil fuel or grid electricity to power additional equipment required for project activities (e.g., drilling and completing additional wells or boreholes, capturing and destroying mine gas, transporting mine gas, etc.), the resulting CO\(_2\) emissions from the energy consumed to capture and destroy methane (PE\(_{EC}\)) must be quantified using Equation 5.4746.
(e) If the total electricity generated by project activities is greater than the additional electricity consumed for the capture and destruction of methane, then the $\text{CONS}_{\text{ELEC}} = 0$ term may be omitted from Equation 5.4746.

Equation 5.4746: Project Emissions from Energy Consumed to Capture and Destroy Methane

$$\text{PE}_{\text{EC}} = (\text{CONS}_{\text{ELEC}} \times \text{CEF}_{\text{ELEC}}) + \frac{(\text{CONS}_{\text{HEAT}} \times \text{CEF}_{\text{HEAT}} + \text{CONS}_{\text{FF}} \times \text{CEF}_{\text{FF}})}{1000}$$

Where,

- PE_{EC}: Project emissions from energy consumed to capture and destroy methane during the reporting period (tMT CO$_2$e)
- $\text{CONS}_{\text{ELEC}}$: Additional electricity consumption for the capture and destruction of methane during the reporting period (MWh)
- CEF_{ELEC}: CO$_2$ emission factor of electricity used from Appendix A (tMT CO$_2$e/MWh)
- $\text{CONS}_{\text{HEAT}}$: Additional heat consumption for the capture and destruction of methane during the reporting period (volume)
- CEF_{HEAT}: CO$_2$ emission factor of heat used from Appendix A (kg CO$_2$/volume)
- CONS_{FF}: Additional fossil fuel consumption for the capture and destruction of methane during the reporting period (volume)
- CEF_{FF}: CO$_2$ emission factor of fossil fuel used from Appendix A (kg CO$_2$/volume)
- $1/1000$: Conversion of kg to metric tons

(f) Project emissions from the destruction of methane (PE$_{\text{MD}}$) must be quantified using Equations 5.48 and 5.49.

Equation 5.4847: Project Emissions from Destruction of Captured Methane

$$\text{PE}_{\text{MD}} = \sum_i \text{MD}_{P,i} \times \text{CEF}_{\text{CH4}}$$

Where,

- PE_{MD}: Project emissions from destruction of methane during the reporting period (tMT CO$_2$e)
- i: Use of methane (flaring, power generation, heat generation, production of transportation fuel, injection into natural gas pipeline, etc.) by all qualifying and non-qualifying destruction devices
- $\text{MD}_{P,i}$: Methane destroyed through use i by qualifying and non-qualifying devices through use i during the reporting period (tMT CH$_4$)
The CO₂ emission factor for combusted methane (CEF₇H₄) is 2.752.744 tMT CO₂e/tMT CH₄.

(g) The amount of mine methane destroyed (MDₚ,i) must be quantified using Equation 5.4948.

(h) Offset Project Operators and Authorized Project Designees may choose to use default methane destruction efficiencies (DEₗ) provided in Appendix B or site-specific methane destruction efficiencies. Destruction technologies not listed in appendix B must use site-specific methane destruction efficiencies. Site-specific methane destruction efficiencies that are demonstrated to the satisfaction of the Executive Officer to be equally or more accurate than the default methane destruction efficiencies may be used upon written approval by the Executive Officer.

Equation 5.4948: Methane Destroyed

\[MDP,i = \sum_i (MMP,i \times DE_i) \]

Where,

\[MDP,i \] = Methane destroyed through use i by qualifying and non-qualifying devices through use i during the reporting period; calculated separately for each destruction device (tMT CH₄)

\[i \] = Use of methane (flaring, power generation, heat generation, production of transportation fuel, injection into natural gas pipeline, etc.) by all qualifying and non-qualifying destruction devices

\[MMP,i \] = Methane measured methane sent to qualifying and non-qualifying devices for destruction through use i during the reporting period corrected to standard conditions, if applicable, for pressure and temperature; calculated separately for each device (tMT CH₄)

\[DE_i \] = Efficiency of methane destruction device i, either site-specific or from Appendix B (%)

With:

\[MMP,i = \sum_i (PSWP,i \times C_{CH₄} + PIBP,i \times C_{CH₄} + PGWP,i \times C_{CH₄} + NSWP,i \times C_{CH₄}) \times 0.0423 \times 0.000454 \]

Where,
\[PSW_{P,i} = \text{Volume of MG from pre-mining surface wells sent to qualifying and non-qualifying devices for destruction through use i during the reporting period (scf)} \]

\[PIB_{P,i} = \text{Volume of MG from pre-mining in-mine boreholes sent to qualifying and non-qualifying devices for destruction through use i during the reporting period (scf)} \]

\[PGW_{P,i} = \text{Volume of MG from post-mining gob wells sent to qualifying and non-qualifying devices for destruction through use i during the reporting period (scf)} \]

\[NSW_{P,i} = \text{Volume of MG from newly drilled surface wells sent to qualifying and non-qualifying devices for destruction through use i during the reporting period (scf)} \]

\[C_{CH4} = \text{Weighted average of measured methane concentration of mine gas captured from methane sources sent to qualifying and non-qualifying destruction devices during the reporting period; calculated separately for each methane source (scf CH}_4/\text{scf CH}_4) \]

0.0423 = \text{Standard Density of methane (lb CH}_4/\text{scf CH}_4) \\
0.000454 = \text{tMT CH}_4/\text{lb CH}_4 \\

\[
C_{CH4} = \frac{\sum_t DV_t \times C_{CH4,t}}{\sum_t DV_t}
\]

\[
C_{CH4} = \frac{\sum_t (DV_t \times C_{CH4,t})}{\sum_t DV_t}
\]

Where,

\[C_{CH4,t} = \text{Daily average methane concentration of mine gas captured from methane sources sent to a destruction device; calculated separately for each methane source (scf CH}_4/\text{scf)} \]

\[DV_t = \text{Daily volume of mine gas sent to a destruction device; calculated separately for each methane source (scf/day)} \]

Methane concentrations and flow rates must be recorded every two minutes with averages calculated at least hourly. If the Offset Project Operator or Authorized Project Designee monitors and records data at a higher frequency, this data may be used within appropriate variables of the above equations to reflect the higher frequency of data collection.

If a thermal-mass flow meter is used to monitor gas flow instead of a volumetric flow meter, the volume and density terms must be replaced by the monitored mass value and the methane concentration must be in mass percent.
(i) Project emissions from uncombusted methane (PE_{UM}) must be quantified using Equation 5.5049.

(j) Offset Project Operators and Authorized Project Designees may choose to use default methane destruction efficiencies (DE_i) provided in Appendix B or site-specific methane destruction efficiencies. Destruction technologies not listed in Appendix B must use site-specific methane destruction efficiencies. Site-specific methane destruction efficiencies that are demonstrated to the satisfaction of the Executive Officer to be equally or more accurate than the default methane destruction efficiencies may be used upon written approval by the Executive Officer.

Equation 5.5049: Uncombusted Methane Emissions

\[
PE_{UM} = \sum_i [MM_{P,i} \times (1 - DE_i)] \times GWP_{CH4}
\]

Where,

- \(PE_{UM}\) = Project emissions from uncombusted methane during the reporting period (tMT CO_2e)
- \(i\) = Use of methane (flaring, power generation, heat generation, production of transportation fuel, injection into natural gas pipeline etc.) by all qualifying and non-qualifying destruction devices
- \(MM_{P,i}\) = Methane measured sent to qualifying and non-qualifying devices for destruction through use i during the reporting period; calculated separately for each destruction device (tMT CH_4)
- \(DE_i\) = Efficiency of methane destruction device i, either site-specific or from Appendix B (%)
- \(GWP_{CH4}\) = Global warming potential of methane (tMT CO_2e/tMT CH_4)

With:

\[
MM_{P,i} = \sum_i (PSW_{P,i} \times C_{CH4} + PIB_{P,i} \times C_{CH4} + PGW_{P,i} \times C_{CH4} + NSW_{P,i} \times C_{CH4}) \times 0.0423 \times 0.000454
\]

Where,

- \(PSW_{P,i}\) = Volume of MG from pre-mining surface wells sent to qualifying and non-qualifying devices for destruction through use i during the reporting period (scf)
$PIB_{P,i}$ = Volume of MG from pre-mining in-mine boreholes sent to by qualifying and non-qualifying devices for destruction through use i during the reporting period (scf)

$PGW_{P,i}$ = Volume of MG from post-mining gob wells sent to qualifying and non-qualifying devices for destruction through use i during the reporting period (scf)

$NSW_{P,i}$ = Volume of MG from newly drilled surface wells sent to qualifying and non-qualifying devices for destruction through use i during the reporting period (scf)

C_{CH4} = Weighted average of measured methane concentration of mine gas captured from methane source sent to qualifying and non-qualifying destruction devices during the reporting period; calculated separately for each methane source (scf CH₄/scf)

0.0423 = Standard Density of methane (lb CH₄/scf CH₄)

0.000454 = tMT CH₄/lb CH₄

With:

$$C_{CH4} = \frac{\sum_t DV_t \times C_{CH4,t}}{\sum_t DV_t}$$

$$C_{CH4,t} = \frac{\sum_t (DV_t \times C_{CH4,t})}{\sum_t DV_t}$$

Where,

$C_{CH4,t}$ = Daily average methane concentration of mine gas captured from methane source sent to a destruction device; calculated separately for each methane source (scf CH₄/scf)

DV_t = Daily volume of mine gas sent to a destruction device; calculated separately for each methane source (scf/day)

Methane concentrations and flow rates must be recorded every two minutes with averages calculated at least hourly. If the Offset Project Operator or Authorized Project Designee monitors and records data at a higher frequency, this data may be used within appropriate variables of the above equations to reflect the higher frequency of data collection.

If a thermal mass flow meter is used to monitor gas flow instead of a volumetric flow meter, the volume and density terms must be replaced by the monitored mass value and the methane concentration must be in mass percent.

(k) If gas flow metering equipment does not internally correct for temperature and pressure provides an actual flow rate or volume instead of a flow rate or volume adjusted to standard conditions, use Equation 5.5150 to determine standardize
the amount of mine gas MG sent to each qualifying and non-qualifying device during the reporting period and MG flow rates, if deriving hyperbolic emission rate decline curve coefficients from measured data.

Equation 5.5450: MG Flow Rate or Volume Corrected Adjusted for Temperature and Pressure

$$MG_{\text{corrected},i,y} = MG_{\text{meas},i,y} \times \frac{520}{T_{MG,y}} \times \frac{P_{MG,y}}{1}$$

$$MG_{\text{adjusted},y} = MG_{\text{actual},y} \times \frac{519.67}{T_{MG,y}} \times \frac{P_{MG,y}}{1}$$

Where,

$MG_{\text{corrected adjusted},i,y}$ = Corrected Average flow rate or total volume of MG collected for the sent to a destruction device during time interval y at utilization type i, adjusted to 60°F and 1 atm standard conditions (scf/unit of time)(scfm or scf)

$MG_{\text{meas actual},i,y}$ = Measured average flow rate or total volume of MG collected for the sent to a destruction device during time interval y at utilization type i (scf/unit of time)(acfm or acf)

$T_{MG,y}$ = Measured absolute temperature of the MG for the time interval y, °R=°F +460 459.67 (°R)

$P_{MG,y}$ = Measured absolute pressure of the MG for the time interval y (atm)

Chapter 6. Monitoring – Quantification Methodology

(a) The Offset Project Operators or Authorized Project Designees is responsible for monitoring the performance of the offset project and operating each component of the collection and destruction system(s) in a manner consistent with the manufacturer’s specifications.

(b) Operational activity of the methane drainage and ventilation systems and the destruction devices must be monitored and documented at least hourly to ensure actual methane destruction. GHG reductions will not be accounted for during periods in which the destruction device is not operational.

(1) For flares, operation is defined as thermocouple readings above 500°F.
(2) For all other destruction devices, the Offset Project Operator or Authorized Project Designee must demonstrate the destruction device was operational, and this demonstration is subject to the review and verification of an ARB-approved third party offset project verification body.

(c) If gas flow metering equipment does not internally correct adjust for temperature and pressure, flow data must be corrected adjusted according to the appropriate quantification methodologies in Chapter 5.

(d) If a project uses elevated amounts of atmospheric gases in extracted mine gas MG as evidence of a pre-mining well being mined through, nitrogen and oxygen concentrations must be determined for each well at the time of offset project commencement and when the Offset Project Operator or Authorized Project Designee reports a pre-mining well as eligible. Gas samples must be collected by a third-party technician and amounts of nitrogen and oxygen concentrations determined by a full gas analysis using a chromatograph at an ISO 17025 accredited lab or a lab that has been certified by an accreditation body conformant with ISO 17025 to perform test methods appropriate for atmospheric gas content analysis.

(e) Data substitution is allowed for limited circumstances where a project encounters flow rate or methane concentration data gaps. Offset Project Operators or Authorized Project Designees may apply the data substitution methodology provided in Appendix C. No data substitution is permissible for data gaps resulting from inoperable equipment that monitors the proper functioning of destruction devices and no emission reductions will be credited under such circumstances.

§ 6.2 Instrument QA/QC.
Instruments and equipment used to monitor the destruction of mine methane or the temperature and pressure used to correct adjust data measurements to STP must be inspected, cleaned maintained, checked and calibrated according to the following:

(a) All gas flow meters and methane analyzer instruments must be:
(1) cleaned and inspected and maintained on a quarterly basis, with the activities performed and “as found/as left condition” of the equipment documented;

(2) field-checked per manufacturer specifications by a trained professional for calibration accuracy with the percent drift documented, using either a portable instrument (such as a pitot tube) or manufacturer specifications, with the last check of the reporting period occurring no more than 24 hours after and up to two months prior to before and one day after the end date of the reporting period; and

(3) calibrated by the manufacturer or a certified calibration service per manufacturer’s specifications or every 5 years, whichever is more frequent. Instruments are exempted from calibration requirements if the manufacturer’s specifications state that no calibration is required.

(b) A check must be performed before any corrective action (e.g., instrument calibration or repositioning) is applied.

(c) If a portable instrument is used (such as a pitot tube or handheld methane analyzer), the portable instrument must be calibrated according to manufacturer’s specifications prior to each use.

(d) For active underground VAM activities, the methane concentration of the reference gas used to check methane analyzers must be below or equal to 2% methane.

(b)(e) Additionally, flow meter and methane analyzer calibrations must be documented to show that the meter was calibrated and methane analyzer calibrations must be documented to show that the calibration was carried out to the range of conditions (temperature and pressure) corresponding to the range of conditions as measured at the mine.

(e)(f) If the field-check on a piece of equipment reveals accuracy outside of beyond a +/- 5% threshold (reading relative to the reference value), corrective action such as calibration by the manufacturer or a certified service provider is required for that piece of equipment.
(d)(g) For the interval between the last successful field check and any calibration event confirming accuracy below the +/- 5% threshold, all data from that meter or analyzer. If a check on a piece of equipment reveals accuracy beyond a +/- 5% threshold, all data from that piece of equipment must be scaled according to the following procedure. These adjustments must be made for the entire period from the last successful field check until such time as the meter is properly calibrated corrective action is taken and a subsequent check demonstrates the equipment to again be within the +/-5% accuracy threshold.

(1) For calibration each check that indicates the flow meter piece of equipment was outside beyond the +/- 5% accuracy threshold, the project developer shall estimate calculate total emission reductions using:
(A) The metered monitored values without correction; and
(B) The metered monitored values adjusted based on the greatest calibration drift recorded at the time of calibration the check.

(e)(2) The lower of the two emission reduction estimates shall be reported as the scaled emission reduction estimate. Data monitored up to two months after a field check may be verified. As such, the end date of the reporting period must be no more than two months after the latest successful field check.

(f) If a portable instrument is used (such as a handheld methane analyzer), the portable instrument must be calibrated according to manufacturer’s specification prior to each use.

§-6.3. Document Retention.
(a) The Offset Project Operator or Authorized Project Designee is required to keep all documentation and information outlined in the Regulation and this protocol. Record retention requirements are set forth in section 95976 of the Regulation.

(b) Information that must be retained by the Offset Project Operator or Authorized Project Designee must include:
(1) All data inputs for the calculation of the project baseline emissions and project emission reductions;
(2) Emission reduction calculations;
(3) Mine operating permits, leases (if applicable), and air, water and land-use permits;

(4)(3) Notices of Violations (NOVs), and any administrative or legal consent orders related to project activities dating back at least three years prior to offset project commencement and for each year of project operation;

(5) Copies of mine plans and mine ventilation plans submitted to MSHA throughout the project life;

(6)(4) Gas flow meter information (model number, serial number, manufacturer's calibration procedures);

(7)(5) Methane analyzer information (model number, serial number, calibration procedures);

(8)(6) Cleaning and inspection records for all gas meters;

(9)(7) Field check results for all gas meters and methane analyzers;

(10)(8) Calibration results for all gas meters and methane analyzers;

(14)(9) Corrective measures taken if meter does not meet performance specifications;

(12)(10) Gas flow data (for each flow meter);

(13)(11) Methane concentration monitoring data;

(14)(12) Gas temperature and pressure readings (only if flow meter does not correct adjust for temperature and pressure automatically);

(15)(13) Destruction device information (model numbers, serial numbers, installation date, operation dates);

(16)(14) Destruction device monitoring data (for each destruction device);

(17)(15) All maintenance records relevant to the methane collection and/or destruction device(s) and monitoring equipment;

(18)(16) If using a calibrated portable gas analyzer for CH₄ content measurement the following records must be retained:

(A) Date, time, and location of methane measurement;

(B) Methane content of biogas (% by volume or mass) for each measurement;
(C) Methane measurement instrument information (model number and serial number);
(D) Date, time, and results of instrument calibration; and
(E) Corrective measures taken if instrument does not meet performance specifications.

§ 6.4. Active Underground Mine Ventilation Air Methane Activities.
(a) The total inlet flow rate of ventilation air entering the destruction device must be measured continuously and recorded every two minutes, and adjusted for temperature and pressure, if applicable, to calculate average flow per hour.
(b) The methane concentration of the ventilation air entering the destruction device and of the exhaust gas leaving the destruction device must be measured continuously and recorded every two minutes to calculate average methane concentrations per hour.
(c) If required in order to standardize the flow rate, volume or mass of ventilation air, the temperature and pressure in the vicinity of the flow meter must be measured continuously and recorded at least every hour to calculate hourly pressure and temperature.
(d) Offset Project Operators and/or Authorized Project Designees must monitor the parameters prescribed in Table 6.1. Data measurements may be recorded in an alternative unit, but must be appropriately converted to specified unit for use in equations provided in chapter 5.

Table 6.1. Active Underground Mine VAM Activity Monitoring Parameters—Quantification Methodology

<table>
<thead>
<tr>
<th>Eq. #</th>
<th>Parameter</th>
<th>Description</th>
<th>Data Unit</th>
<th>Measurement Frequency</th>
<th>Measured (m), Calculated (c), Measured (m), Operating Records (o)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>$V_{AMB,i}$</td>
<td>Volume of ventilation air that would have been sent to a non-qualifying devices for destruction through use i</td>
<td>scf</td>
<td>Estimated at offset project commencement; calculated annually each reporting period if non-qualifying device continues</td>
<td>$e \cdot m$</td>
<td>The largest of the three values calculated per section 5.1.1(dg)</td>
</tr>
<tr>
<td>Eq. #</td>
<td>Parameter</td>
<td>Description</td>
<td>Data Unit</td>
<td>Measurement Frequency</td>
<td>Measured (m), Calculated (c), Measured (m), Operating Records (o)</td>
<td>Comment</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>--</td>
<td>-----------</td>
<td>-----------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>5.4</td>
<td>$C_{CH4,t}$</td>
<td>Hourly average methane concentration of ventilation air sent to a destruction device</td>
<td>scf CH₄ / scf scf CH₄/scf</td>
<td>Continuously</td>
<td>e, m</td>
<td>Readings taken every two minutes to calculate average methane concentration per hour</td>
</tr>
<tr>
<td>5.5</td>
<td>$VAM_{flow,t}$</td>
<td>Hourly average flow rate of ventilation air sent to a destruction device</td>
<td>scf/m</td>
<td>Continuously</td>
<td>e, m</td>
<td>Readings taken every two minutes to calculate average flow rate per hour; adjusted to standard conditions, if applicable, using Equation 5.11</td>
</tr>
<tr>
<td>5.9</td>
<td>$VAM_{FLOW,y}$</td>
<td>Average flow rate of ventilation air entering the destruction device during period y</td>
<td>scfm</td>
<td>Continuously</td>
<td>m, e</td>
<td>Readings taken every two minutes to calculate average hourly flow; adjusted if applicable using Equation 5.11</td>
</tr>
<tr>
<td>5.4</td>
<td>$TIME_{y}$</td>
<td>Time during which the destruction device is operational during period y</td>
<td>m</td>
<td>Continuously</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>5.9</td>
<td>y</td>
<td>Hours during which the destruction device was operational during reporting period</td>
<td>h</td>
<td>Continuously</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>5.10</td>
<td>$CA_{flow,y}$</td>
<td>Hourly average flow rate of</td>
<td>scfm</td>
<td>Continuously</td>
<td>m, c</td>
<td>Readings taken every every two minutes to calculate average hourly flow; adjusted if applicable using Equation 5.11</td>
</tr>
</tbody>
</table>

During the reporting period in the baseline scenario to operate after project start.
<table>
<thead>
<tr>
<th>Eq. #</th>
<th>Parameter</th>
<th>Description</th>
<th>Data</th>
<th>Measurement</th>
<th>Measured (m), Calculated (c), Measured (m), Operating Records (o)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.10</td>
<td></td>
<td>cooling air sent to a destruction device after the metering point of the ventilation air stream during period y</td>
<td></td>
<td></td>
<td>two minutes to calculate flow rate per hour; adjusted to standard conditions, if applicable using equation 5.11. If the flow of cooling air is not metered, the maximum capacity of the air intake system must be used for the flow rate.</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>C\text{CH}_4,\text{exhaust}_y</td>
<td>Hourly average methane concentration of ventilation air in ventilation air exhaust gas</td>
<td>scf \text{CH}_4 / scf scf \text{CH}_4 / scf</td>
<td>Continuously</td>
<td>m, c</td>
<td>Readings taken every two minutes (either average over two minutes or instantaneous) to calculate average methane concentration per hour</td>
</tr>
<tr>
<td>5.5</td>
<td>V\text{AM}_{p,i}</td>
<td>Volume of ventilation air sent to -qualifying and non-qualifying devices for destruction through use i during the project during the reporting period</td>
<td>scf</td>
<td>Continuously</td>
<td>m, c</td>
<td>Adjusted to standard conditions, if applicable, using Equation 5.11</td>
</tr>
<tr>
<td>5.5</td>
<td>M\text{GSUPP}_{p,i}</td>
<td>Volume of mine gas extracted from a methane drainage system and sent with ventilation air to qualifying and non-qualifying destruction</td>
<td>scf</td>
<td>Every reporting period</td>
<td>m, c</td>
<td>Adjusted to standard conditions, if applicable, using Equation 5.11</td>
</tr>
<tr>
<td>Eq. #</td>
<td>Parameter</td>
<td>Description</td>
<td>Data Unit</td>
<td>Measurement Frequency</td>
<td>Measured (m), Calculated (c), Measured (m), Operating Records (o)</td>
<td>Comment</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>---</td>
<td>-----------</td>
<td>-----------------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>5.5</td>
<td>$C_{CH4,MG,t}$</td>
<td>Hourly Daily average methane concentration of mine gas sent with ventilation air to destruction device</td>
<td>(scf/CH4/scf)</td>
<td>Continuously</td>
<td>m, c</td>
<td>Readings taken every 15 minutes to calculate average methane concentration per day</td>
</tr>
<tr>
<td>5.5</td>
<td>$DV_{MG,t}$</td>
<td>Daily volume of mine gas sent with ventilation air to destruction device</td>
<td>(scf/day)/scf</td>
<td>Continuously</td>
<td>m, c</td>
<td>Readings taken every 15 minutes to calculate average flow per day; volume per day; adjusted to standard conditions, if applicable, using Equation 5.11</td>
</tr>
<tr>
<td>5.7</td>
<td>CONS$_{ELEC}$</td>
<td>Additional electricity consumption for the capture and destruction of methane during the reporting period</td>
<td>MWh</td>
<td>Every reporting period</td>
<td>o</td>
<td>From electricity use records</td>
</tr>
<tr>
<td>5.7</td>
<td>CONS$_{HEAT}$</td>
<td>Additional heat consumption for the capture and destruction of methane during the reporting period</td>
<td>Volume</td>
<td>Every reporting period</td>
<td>o</td>
<td>From purchased heat use records</td>
</tr>
<tr>
<td>5.7</td>
<td>CONS$_{FF}$</td>
<td>Additional fossil fuel consumption for the capture and destruction of methane during the reporting period</td>
<td>Volume</td>
<td>Every reporting period</td>
<td>o</td>
<td>From fuel use records</td>
</tr>
<tr>
<td>Eq. #</td>
<td>Parameter</td>
<td>Description</td>
<td>Data Unit</td>
<td>Measurement Frequency</td>
<td>Measured (m), Calculated (c), Measured (m), Operating Records (o)</td>
<td>Comment</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>5.9</td>
<td>VA\textsubscript{flow,i,y}</td>
<td>Hourly average flow rate of ventilation air sent to a device for destruction through use i during the reporting period</td>
<td>scfm</td>
<td>Continuously</td>
<td>m, c</td>
<td>Readings taken every two minutes to calculate flow rate per hour; adjusted to standard conditions, if applicable using equation 5.11.</td>
</tr>
<tr>
<td>5.11</td>
<td>\textit{VAMflowmeas,y} \textup{VAactual,y}</td>
<td>Uncorrected Measured average flow rate or total volume of ventilation air entering the sent to a destruction device as measured during period y</td>
<td>scf/unit of time acfm or acf</td>
<td>Continuously</td>
<td>m, c</td>
<td>Readings taken every two minutes to calculate average hourly flow rate per hour; adjusted to standard conditions, if applicable, to \textit{VAMflowmeas,y} using Equation 5.11.</td>
</tr>
<tr>
<td>5.11</td>
<td>\textit{TVAminflow,y}</td>
<td>Measured absolute temperature of ventilation air entering the sent to a destruction device for the time period interval y, (^\circ \text{R}=^\circ \text{F}+460) 459.67</td>
<td>°R</td>
<td>Continuously</td>
<td>m, c</td>
<td>Readings taken at least every hour to calculate hourly temperature for time interval y</td>
</tr>
<tr>
<td>5.11</td>
<td>\textit{PVAMinflow,y}</td>
<td>Measured absolute pressure of ventilation air entering the sent to a destruction device for the time period interval y</td>
<td>atm</td>
<td>Continuously</td>
<td>m, c</td>
<td>Readings taken at least every hour to calculate hourly pressure for time interval y</td>
</tr>
</tbody>
</table>

\textbf{§6.5. Active Underground Mine Methane Drainage Activities.}
(a) Mine gas from each methane source (i.e., pre-mining surface wells, pre-mining in-mine boreholes, or post-mining gob wells) must be monitored separately prior
to interconnection with other MG sources. The volumetric or mass gas flow, methane concentration, temperature, and pressure must be monitored and recorded separately for each methane source.

(b) Mine gas from each methane source (i.e., pre-mining surface wells, pre-mining in-mine boreholes, or post-mining gob wells) must be measured continuously. Offset Project Operators must record the mine gas flow rate every 15 minutes, adjusted for temperature and pressure, and record the totalized mine gas volume or mass at least daily, adjusted for temperature and pressure.

(c) Mine gas delivered to a destruction device must be measured continuously. Offset Project Operators must record the mine gas flow rate every 15 minutes, adjusted for temperature and pressure, and record the totalized mine gas volume or mass at least daily, adjusted for temperature and pressure. The flow rate of MG sent to a destruction device must be measured continuously, recorded every 15 minutes, and adjusted for temperature and pressure, if applicable, to calculate daily volume of MG sent to a destruction device. The flow of mine gas to each destruction device must be monitored separately for each destruction device, unless:

1. A project consists of destruction devices that are of identical efficiency and verified to be operational throughout the reporting period; then a single flow meter may be used to monitor gas flow to all destruction devices; or
2. A project consists of destruction devices that are not of identical efficiency, in which case the methane destruction efficiency of the least efficient destruction device must be used as the methane destruction efficiency for all destruction devices monitored by that meter.

(d) If a project using a single meter to monitor gas flow to multiple destruction devices has any periods of time when not all destruction devices downstream of a single flow meter are operational, methane destruction from the set of downstream devices during these periods of time will only be eligible provided that the offset verifier can confirm all of the following requirements and conditions are met:
(1) The methane destruction efficiency of the least efficient downstream destruction device in operation must be used as the methane destruction efficiency for all destruction devices downstream of the single meter; and

(2) All devices are either equipped with valves on the input gas line that close automatically if the device becomes non-operational (requiring no manual intervention), or designed in such a manner that it is physically impossible for gas to pass through while the device is non-operational; and

(3) For any period of time during which one or more downstream destruction devices are not operational, it must be documented that the remaining operational devices have the capacity to destroy the maximum gas flow recorded during the period.

(e)(d) The methane concentration of the mine gas extracted from each methane source must be measured continuously, and recorded every 15 minutes and averaged at least daily to calculate daily average methane concentration.

(f)(e) If required in order to adjust the flow rate, volume, or mass of mine gas, the temperature and pressure of the mine gas from each methane source must be measured continuously and recorded at least every hour to calculate hourly temperature and pressure.

(g)(f) Offset Project Operators and/or Authorized Project Designees must monitor the parameters prescribed in Table 6.2. Data measurements may be recorded in an alternative unit, but must be appropriately converted to specified unit for use in equations provided in chapter 5.

Table 6.2. Active Underground Mine Methane Drainage Activity Monitoring Parameters—Quantification Methodology

<table>
<thead>
<tr>
<th>Eq. #</th>
<th>Parameter</th>
<th>Description</th>
<th>Data Unit</th>
<th>Measurement Frequency</th>
<th>Measured (m) Calculated (c), Measured (m), Operating Records (o), Reference (r)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.15</td>
<td>DE_i</td>
<td>Efficiency of methane destruction device i</td>
<td>%</td>
<td>Annually/Each reporting period</td>
<td>r or m</td>
<td>Default methane destruction efficiencies provided in Appendix B or site-</td>
</tr>
<tr>
<td>Eq. #</td>
<td>Parameter</td>
<td>Description</td>
<td>Data Unit</td>
<td>Measurement Frequency</td>
<td>Measured (m) Calculated (c), Operating Records (o), Reference (r)</td>
<td>Comment</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>5.15</td>
<td>PSW_{bi}</td>
<td>Volume of MG from pre-mining surface wells that would have been sent to non-qualifying devices for destruction through use i during the reporting period in the baseline scenario</td>
<td>scf</td>
<td>Estimated at offset project commencement; calculated annually each reporting period if non-qualifying device continues to operate after project start</td>
<td>(e, m, c)</td>
<td>The largest of the three values calculated per section 5.2.1(eh).</td>
</tr>
<tr>
<td>5.15</td>
<td>PIB_{bi}</td>
<td>Volume of MG from pre-mining in-mine boreholes that would have been sent to non-qualifying devices for destruction through use i during the reporting period in the baseline scenario</td>
<td>scf</td>
<td>Estimated at offset project commencement; calculated annually each reporting period if non-qualifying device continues to operate after project start</td>
<td>(e, m, c)</td>
<td>The largest of the three values calculated per section 5.2.1(eh)</td>
</tr>
<tr>
<td>5.15</td>
<td>PGW_{bi}</td>
<td>Volume of MG from post-mining gob wells that would have been sent to non-qualifying devices for destruction through use i during the reporting period in the baseline scenario</td>
<td>scf</td>
<td>Estimated at offset project commencement; calculated annually each reporting period if non-qualifying device continues to operate after project start</td>
<td>(e, m, c)</td>
<td>The largest of the three values calculated per section 5.2.1(eh)</td>
</tr>
<tr>
<td>5.16</td>
<td>C_{CH4,i}</td>
<td>Hourly Daily average methane concentration of mine gas sent to a destruction device</td>
<td>(scf (CH_4)/scf) (CH_4)/scf</td>
<td>Continuously</td>
<td>(e, m, c)</td>
<td>Readings taken every 15 minutes to calculate average methane concentration</td>
</tr>
<tr>
<td>Eq. #</td>
<td>Parameter</td>
<td>Description</td>
<td>Data Unit</td>
<td>Measurement Frequency</td>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>5.15</td>
<td>DV$_i$</td>
<td>Daily volume of mine gas sent to a destruction device</td>
<td>(scf/day)</td>
<td>Continuously</td>
<td>m, c</td>
<td></td>
</tr>
<tr>
<td>5.16</td>
<td>PIB$_{p,j}$</td>
<td>Volume of MG from pre-mining in-mine boreholes sent to qualifying and non-qualifying devices for destruction through use i during the reporting period</td>
<td>scf</td>
<td>Every reporting period</td>
<td>m, c</td>
<td></td>
</tr>
<tr>
<td>5.21</td>
<td>PGW$_{p,j}$</td>
<td>Volume of MG from post-mining gob wells sent to qualifying and non-qualifying devices for destruction through use i during the reporting period</td>
<td>scf</td>
<td>Every reporting period</td>
<td>m, c</td>
<td></td>
</tr>
<tr>
<td>5.22</td>
<td>PSW$_{nq,d,i}$</td>
<td>Volume of MG from pre-mining surface wells sent to non-qualifying devices for</td>
<td>scf</td>
<td>Every reporting period</td>
<td>m</td>
<td></td>
</tr>
</tbody>
</table>

- **DV$_i$**: Daily volume of mine gas sent to a destruction device. Readings taken every 15 minutes to calculate average flow volume per day; adjusted to standard conditions, if applicable, using equation 5.23. Calculated separately for each methane source.
- **PIB$_{p,j}$**: Volume of MG from pre-mining in-mine boreholes sent to qualifying and non-qualifying devices for destruction through use i during the reporting period. Adjusted to standard conditions, if applicable, to STP using Equation 5.23.
- **PGW$_{p,j}$**: Volume of MG from post-mining gob wells sent to qualifying and non-qualifying devices for destruction through use i during the reporting period. Adjusted to standard conditions, if applicable, to STP using Equation 5.23.
- **PSW$_{nq,d,i}$**: Volume of MG from pre-mining surface wells sent to non-qualifying devices for.
<table>
<thead>
<tr>
<th>Eq. #</th>
<th>Parameter</th>
<th>Description</th>
<th>Data Unit</th>
<th>Measurement Frequency</th>
<th>Measured (m) Calculated (c), Operating Records (o), Reference (r)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.16</td>
<td>MGSUPP,i</td>
<td>Volume of mine methane gas extracted from a methane drainage system and combusted with ventilation air to qualifying and non-qualifying devices for destruction during the reporting period</td>
<td>scf</td>
<td>Every reporting period</td>
<td>m, c</td>
<td>Adjusted to standard conditions, if applicable, using Equation 5.23</td>
</tr>
<tr>
<td>5.16</td>
<td>C_{CH_4,MG,i}</td>
<td>Hourly/Daily average methane concentration of mine gas sent with ventilation air to destruction device</td>
<td>(scf CH\textsubscript{4} /scf) scf CH\textsubscript{4} /scf</td>
<td>Continuously</td>
<td>m, c</td>
<td>Readings taken every 15 minutes to calculate average methane concentration per day</td>
</tr>
<tr>
<td>5.16</td>
<td>DV_{MG,t}</td>
<td>Daily volume of mine gas sent with ventilation air to destruction device</td>
<td>(scf/day)</td>
<td>Continuously</td>
<td>m, c</td>
<td>Readings taken every 15 minutes to calculate average flow per day-volume per day; adjusted to standard conditions, if applicable, using equation 5.23</td>
</tr>
<tr>
<td>5.16</td>
<td>PSWngd,i</td>
<td>Volume of MG from pre-mining surface wells sent to non-qualifying devices for destruction through use during the reporting period</td>
<td>scf</td>
<td>Every reporting period</td>
<td>m, c</td>
<td>Adjusted to standard conditions, if applicable, using equation 5.23</td>
</tr>
<tr>
<td>5.17</td>
<td>PSWe_{pre,i}</td>
<td>Volume of MG</td>
<td>scf</td>
<td>Every reporting period</td>
<td>m, c</td>
<td>Adjusted to</td>
</tr>
<tr>
<td>Eq. #</td>
<td>Parameter</td>
<td>Description</td>
<td>Data Unit</td>
<td>Measurement Frequency</td>
<td>Measured (m) Calculated (c), Measured (m), Operating Records (o), Reference (r)</td>
<td>Comment</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>PSWe\text{post,}</td>
<td>Volume of MG destroyed by sent to qualifying destruction devices in the current reporting period captured from pre-mining surface wells that were mined through during earlier reporting periods</td>
<td>scf</td>
<td>Every reporting period</td>
<td>m, c</td>
<td>Adjusted to standard conditions, if applicable, to STP using Equation 5.23</td>
</tr>
<tr>
<td>5.17</td>
<td>CONS\text{ELEC}</td>
<td>Additional electricity consumption for the capture and destruction of methane during the reporting period</td>
<td>MWh</td>
<td>Every reporting period</td>
<td>o</td>
<td>From electricity use records</td>
</tr>
<tr>
<td>5.19</td>
<td>CONS\text{HEAT}</td>
<td>Additional heat consumption for the capture and destruction of methane during the reporting period</td>
<td>Volume</td>
<td>Every reporting period</td>
<td>o</td>
<td>From purchased heat use records</td>
</tr>
<tr>
<td>5.19</td>
<td>CONS\text{FF}</td>
<td>Additional fossil fuel consumption for the capture and destruction of</td>
<td>Volume</td>
<td>Every reporting period</td>
<td>o</td>
<td>From fuel use records</td>
</tr>
<tr>
<td>Eq. #</td>
<td>Parameter</td>
<td>Description</td>
<td>Data Unit</td>
<td>Measurement Frequency</td>
<td>Measured (m) Calculated (c), Measured (m), Operating Records (o), Reference (r)</td>
<td>Comment</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>5.21</td>
<td>PSW_{P,all,i}</td>
<td>Volume of MG from pre-mining surface wells captured and destroyed by sent to qualifying and non-qualifying devices for destruction through use i during the reporting period. For qualifying devices, all MG, whether from a mined through well or not must be quantified regardless of whether or not the well is mined through by the end of the reporting period. For qualifying devices, all MG, whether from a mined through well or not must be quantified regardless of whether or not the well is mined through by the end of the reporting period.</td>
<td>scf</td>
<td>Every reporting period</td>
<td>m, c</td>
<td>Adjusted to standard conditions, if applicable, to STP using Equation 5.23</td>
</tr>
<tr>
<td>5.22</td>
<td>PSW_{P,all,i}</td>
<td>Volume of MG from pre-mining surface wells captured and destroyed by sent to qualifying and non-qualifying devices for destruction through use i during the reporting period. For qualifying devices, all MG, whether from a mined through well or not must be quantified regardless of whether or not the well is mined through by the end of the reporting period. For qualifying devices, all MG, whether from a mined through well or not must be quantified regardless of whether or not the well is mined through by the end of the reporting period.</td>
<td>scf</td>
<td>Every reporting period</td>
<td>m, c</td>
<td>Adjusted to standard conditions, if applicable, to STP using Equation 5.23</td>
</tr>
<tr>
<td>5.23</td>
<td>MG_{sc实际情况}</td>
<td>Measured average flow rate or total volume of MG collected for sent to a destruction device during time interval y at utilization type i.</td>
<td>(scf/unit of time) acfm or acf</td>
<td>Continuously</td>
<td>m</td>
<td>Adjusted if applicable to STP using Equation 5.23</td>
</tr>
<tr>
<td>5.23</td>
<td>T_{MG,y}</td>
<td>Measured absolute temperature of MG for the time interval y, "R=F +460.459.67</td>
<td>°R</td>
<td>Continuously</td>
<td>m, c</td>
<td>Readings taken at least every hour to calculate temperature for time interval y</td>
</tr>
<tr>
<td>5.23</td>
<td>P_{MG,y}</td>
<td>Measured absolute pressure of MG for the time interval y</td>
<td>atm</td>
<td>Continuously</td>
<td>m, c</td>
<td>Readings taken at least every hour to calculate temperature</td>
</tr>
</tbody>
</table>
§ 6.6. Active Surface Mine Methane Drainage Activities.

(a) Mine gas from each methane source (i.e., pre-mining surface wells, pre-mining in-mine boreholes, existing CBM wells that would otherwise be shut-in and abandoned as a result of encroaching mining, abandoned wells that re-activated, and converted dewatering wells) must be monitored separately prior to interconnection with other MG sources. The volumetric or mass gas flow, methane concentration, temperature, and pressure must be monitored and recorded separately for each methane source.

(a) SMM from the drainage system must be measured continuously. Offset Project Operators must record the SMM flow rate every 15 minutes, adjusted for temperature and pressure, and record the totalized SMM volume or mass at least daily, adjusted for temperature and pressure.

(b) SMM delivered to a destruction device must be measured continuously. Offset Project Operators must record the SMM flow rate every 15 minutes, adjusted for temperature and pressure, and record the totalized SMM volume or mass at least daily, adjusted for temperature and pressure. The flow rate of MG sent to a destruction device must be measured continuously, recorded every 15 minutes, and adjusted for temperature and pressure, if applicable, to calculate daily volume of MG sent to a destruction device. The flow of gas to each destruction device must be monitored separately for each destruction device, unless:

(1) A project consists of destruction devices that are of identical efficiency and verified to be operational throughout the reporting period; then a single flow meter may be used to monitor gas flow to all destruction devices; or

(2) A project consists of destruction devices that are not of identical efficiency, in which case the methane destruction efficiency of the least
efficient methane destruction device must be used as the methane destruction efficiency for all destruction devices monitored by that meter.

(c) If a project using a single meter to monitor gas flow to multiple destruction devices has any periods of time when not all destruction devices downstream of a single flow meter are operational, methane destruction from the set of downstream devices during these periods of time will only be eligible provided that the offset verifier can confirm all of the following requirements and conditions are met:

1. The methane destruction efficiency of the least efficient downstream destruction device in operation must be used as the methane destruction efficiency for all destruction devices downstream of the single meter; and

2. All devices are either equipped with valves on the input gas line that close automatically if the device becomes non-operational (requiring no manual intervention), or designed in such a manner that it is physically impossible for gas to pass through while the device is non-operational; and

3. For any period of time during which one or more downstream destruction devices are not operational, it must be documented that the remaining operational devices have the capacity to destroy the maximum gas flow recorded during the period.

(d) The methane concentration of the SMM extracted from each methane source must be measured continuously, and recorded every 15 minutes and averaged at least daily to calculate daily average methane concentration.

(e) If required in order to adjust the flow rate, volume, or mass of mine gas, the temperature and pressure of the SMM must be measured continuously and recorded at least every hour to calculate hourly temperature and pressure.

(f) Offset Project Operators and/or Authorized Project Designees must monitor the parameters prescribed in Table 6.3. Data measurements may be recorded in an alternative unit, but must be appropriately converted to specified unit for use in equations provided in chapter 5.
Table 6.3. Active Surface Mine Methane Drainage Activity Monitoring Parameters — Quantification Methodology

<table>
<thead>
<tr>
<th>Eq. #</th>
<th>Parameter</th>
<th>Description</th>
<th>Data Unit</th>
<th>Measurement Frequency</th>
<th>Measured (m)</th>
<th>Calculated (c), Operating Records (o), Reference (r)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.27</td>
<td>DE<sub>i</sub></td>
<td>Efficiency of methane destruction device i</td>
<td>%</td>
<td>AnnuallyEach reporting period</td>
<td>r or m</td>
<td>Default methane destruction efficiencies provided in Appendix B or site-specific methane destruction efficiencies approved by the Executive Officer</td>
<td></td>
</tr>
<tr>
<td>5.27</td>
<td>PSWB<sub>i</sub></td>
<td>Volume of MG from pre-mining surface wells that would have been sent to non-qualifying devices for destruction through use i during the reporting period in the baseline scenario</td>
<td>scf</td>
<td>Estimated at offset project commencement; calculated annually each reporting period if non-qualifying device continues to operate after project start</td>
<td>c, m</td>
<td>The largest of the three values calculated per section 5.3.1(eh)</td>
<td></td>
</tr>
<tr>
<td>5.27</td>
<td>PIB<sub>B,i</sub></td>
<td>Volume of MG from pre-mining in-mine boreholes that would have been sent to non-qualifying devices for destruction through use i during the reporting period in the baseline scenario</td>
<td>scf</td>
<td>Estimated at offset project commencement; calculated annually each reporting period if non-qualifying device continues to operate after project start</td>
<td>c, m</td>
<td>The largest of the three values calculated per section 5.3.1(eh)</td>
<td></td>
</tr>
<tr>
<td>5.27</td>
<td>ECW<sub>B,i</sub></td>
<td>Volume of MG from existing coalbed methane wells that would otherwise be shut-in and</td>
<td>scf</td>
<td>Estimated at offset project commencement; calculated annually each reporting period</td>
<td>c, m</td>
<td>The largest of the three values calculated per section 5.3.1(eh)</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Data Unit</td>
<td>Measurement Frequency</td>
<td>Comment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AWR(_i)</td>
<td>Volume of MG from abandoned wells that are reactivated that would have been sent to non-qualifying devices for destruction through use during the reporting period in the baseline scenario</td>
<td>scf</td>
<td>Estimated at offset project commencement; calculated annually each reporting period if non-qualifying device continues to operate after project start</td>
<td>The largest of the three values calculated per section 5.3.1(eh).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDW(_i)</td>
<td>Volume of MG from converted dewatering wells that would have been sent to non-qualifying devices for destruction through use during the reporting period in the baseline scenario</td>
<td>scf</td>
<td>Estimated at offset project commencement; calculated annually each reporting period if non-qualifying device continues to operate after project start</td>
<td>The largest of the three values calculated per section 5.3.1(eh).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(_{CH4,i})</td>
<td>Hourly/Daily average methane concentration of mine gas sent to a destruction device</td>
<td>(scf CH(_4)/scf CH(_4)/scf)</td>
<td>Continuously</td>
<td>Readings taken every 15 minutes to calculate average methane concentration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eq. #</td>
<td>Parameter</td>
<td>Description</td>
<td>Data Unit</td>
<td>Measurement Frequency</td>
<td>Measured (m), Calculated (c), Operating Records (o), Reference (r)</td>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>--</td>
<td>-----------</td>
<td>-----------------------</td>
<td>--</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>5.27</td>
<td>DV_t</td>
<td>Daily volume of mine gas sent to a destruction device</td>
<td>(scf/day)</td>
<td>Continuously</td>
<td>m, c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.28</td>
<td>PSW_{i,1}</td>
<td>Volume of MG from pre-mining surface wells sent to qualifying and non-qualifying devices for destruction through use during the reporting period. For qualifying devices, only the eligible amount per Equation 5.29 in accordance with sections 5.3.1(k), (l), and (m) must be quantified</td>
<td>scf</td>
<td>Every reporting period</td>
<td>m, c</td>
<td>Adjusted, if applicable, to STP using Equation 5.38</td>
<td></td>
</tr>
<tr>
<td>5.28</td>
<td>PIB_{P,i}</td>
<td>Volume of MG from pre-mining in-mine boreholes sent to qualifying and</td>
<td>scf</td>
<td>Every reporting period</td>
<td>m, c</td>
<td>Adjusted to standard conditions, if applicable, to STP using</td>
<td></td>
</tr>
<tr>
<td>5.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Readings taken every 15 minutes to calculate average flow volume per day. Adjusted to standard conditions, if applicable, using equation 5.23. Calculated separately for each methane source.
<table>
<thead>
<tr>
<th>Eq. #</th>
<th>Parameter</th>
<th>Description</th>
<th>Data Unit</th>
<th>Measurement Frequency</th>
<th>Measured (m), Calculated (c), Operating Records (o), Reference (r)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>non-qualifying devices for destruction through use i during the reporting period</td>
<td></td>
<td></td>
<td></td>
<td>Equation 5.38</td>
</tr>
<tr>
<td>5.28</td>
<td>ECW_{i,j}</td>
<td>Volume of MG from existing coal bed methane wells that would otherwise be shut-in and abandoned as a result of encroaching mining sent to qualifying and non-qualifying devices for destruction through use i during the reporting period. For qualifying devices, only the eligible amount per Equation 5.27 in accordance with sections 5.3.1(k), (l), and (m) must be quantified</td>
<td>scf</td>
<td>Every reporting period</td>
<td>m_{c}</td>
<td>Adjusted, if applicable, to STP using Equation 5.38</td>
</tr>
<tr>
<td>5.28</td>
<td>AWR_{i,j}</td>
<td>Volume of MG from abandoned wells that are reactivated sent to qualifying and non-qualifying devices for destruction through use i during the reporting period. For qualifying devices, only the eligible amount per Equation 5.31 in accordance with</td>
<td>scf</td>
<td>Every reporting period</td>
<td>m_{c}</td>
<td>Adjusted, if applicable, to STP using Equation 5.38</td>
</tr>
<tr>
<td>Eq. #</td>
<td>Parameter</td>
<td>Description</td>
<td>Data Unit</td>
<td>Measurement Frequency</td>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>5.28</td>
<td>CDW_{i}</td>
<td>Volume of MG from converted dewatering wells sent to qualifying and non-qualifying devices for destruction through use i during the reporting period. For qualifying devices, only the eligible amount per Equation 5.29 in accordance with sections 5.3.1(k), (l), and (m) must be quantified</td>
<td>scf</td>
<td>Every reporting period</td>
<td>Adjusted, if applicable, to STP using Equation 5.38</td>
<td></td>
</tr>
<tr>
<td>5.28</td>
<td>PSW_{i}</td>
<td>Volume of MG from pre-mining surface wells sent to non-qualifying devices for destruction through use i during the reporting period</td>
<td>scf</td>
<td>Every reporting period</td>
<td>Adjusted to standard conditions, if applicable, to STP using Equation 5.38</td>
<td></td>
</tr>
<tr>
<td>5.28</td>
<td>ECW_{i}</td>
<td>Volume of MG from existing coal bed methane wells that would otherwise be shut-in and abandoned as a result of encroaching mining sent to non-qualifying devices for destruction through use i during the reporting period</td>
<td>scf</td>
<td>Every reporting period</td>
<td>Adjusted to standard conditions, if applicable, to STP using Equation 5.38</td>
<td></td>
</tr>
<tr>
<td>Eq. #</td>
<td>Parameter</td>
<td>Description</td>
<td>Data Unit</td>
<td>Measurement Frequency</td>
<td>Measured (m), Calculated (c), Operating Records (o), Reference (r)</td>
<td>Comment</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>---</td>
<td>-----------</td>
<td>-----------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>5.28</td>
<td>AWRnqd<sub>i</sub></td>
<td>Volume of MG from abandoned wells that are reactivated sent to non-qualifying devices for destruction through use during the reporting period</td>
<td>scf</td>
<td>Every reporting period</td>
<td>m, c</td>
<td>Adjusted to standard conditions, if applicable, to STP using Equation 5.38</td>
</tr>
<tr>
<td>5.28</td>
<td>CDWnqd<sub>i</sub></td>
<td>Volume of MG from converted dewatering wells sent to non-qualifying devices for destruction through use during the reporting period</td>
<td>scf</td>
<td>Every reporting period</td>
<td>m, c</td>
<td>Adjusted to standard conditions, if applicable, to STP using Equation 5.38</td>
</tr>
<tr>
<td>5.29</td>
<td>PSWe<sub>pre,i</sub></td>
<td>Volume of MG sent to qualifying destruction devices, from the offset project commencement date beginning of the crediting period through the end of the current reporting period captured from pre-mining surface wells that were mined through during the current reporting period</td>
<td>scf</td>
<td>Every reporting period</td>
<td>m, c</td>
<td>Adjusted to standard conditions, if applicable, to STP using Equation 5.38</td>
</tr>
<tr>
<td>5.29</td>
<td>PSWe<sub>post,i</sub></td>
<td>Volume of MG sent to qualifying destruction devices in the current reporting period captured from pre-mining surface wells that were mined through during earlier reporting periods</td>
<td>scf</td>
<td>Every reporting period</td>
<td>m, c</td>
<td>Adjusted to standard conditions, if applicable, to STP using Equation 5.38</td>
</tr>
<tr>
<td>Eq. #</td>
<td>Parameter</td>
<td>Description</td>
<td>Data Unit</td>
<td>Measurement Frequency</td>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>5.30</td>
<td>ECWe_{pre,i}</td>
<td>Volume of MG sent to qualifying destruction devices, from the offset project commencement date beginning of the crediting period through the end of the current-reporting period, captured from existing coal bed methane wells that would otherwise be shut-in and abandoned as a result of encroaching mining that were mined through during the current-reporting period</td>
<td>scf</td>
<td>Every reporting period</td>
<td>Adjusted to standard conditions, if applicable, to STP using Equation 5.38</td>
<td></td>
</tr>
<tr>
<td>5.30</td>
<td>ECWe_{post,i}</td>
<td>Volume of MG sent to qualifying destruction devices in the current reporting period captured from existing coal bed methane wells that would otherwise be shut-in and abandoned as a result of encroaching mining that were mined through during earlier reporting periods</td>
<td>scf</td>
<td>Every reporting period</td>
<td>Adjusted to standard conditions, if applicable, to STP using Equation 5.38</td>
<td></td>
</tr>
<tr>
<td>5.31</td>
<td>AWRe_{pre,i}</td>
<td>Volume of MG sent to qualifying destruction devices, from the offset project</td>
<td>scf</td>
<td>Every reporting period</td>
<td>Adjusted to standard conditions, if applicable, to STP using Equation 5.38</td>
<td></td>
</tr>
<tr>
<td>Eq. #</td>
<td>Parameter</td>
<td>Description</td>
<td>Data Unit</td>
<td>Measurement Frequency</td>
<td>Measured (m), Calculated (c), Operating Records (o), Reference (r)</td>
<td>Comment</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>5.31</td>
<td>AWR_{post,i}</td>
<td>Volume of MG sent to qualifying destruction devices in the current reporting period captured from abandoned wells that are reactivated that were mined through during the current reporting period</td>
<td>scf</td>
<td>Every reporting period</td>
<td>m, c</td>
<td>Adjusted to standard conditions, if applicable, to STP using Equation 5.38</td>
</tr>
<tr>
<td>5.32</td>
<td>CDW_{pre,i}</td>
<td>Volume of MG sent to qualifying destruction devices, from the offset project commencement date through the end of the current reporting period, captured from converted dewatering wells that were mined through during the current reporting period</td>
<td>scf</td>
<td>Every reporting period</td>
<td>m, c</td>
<td>Adjusted to standard conditions, if applicable, to STP using Equation 5.38</td>
</tr>
<tr>
<td>5.32</td>
<td>CDW_{post,i}</td>
<td>Volume of MG sent to qualifying destruction devices in the current reporting period</td>
<td>scf</td>
<td>Every reporting period</td>
<td>m, c</td>
<td></td>
</tr>
<tr>
<td>Eq. #</td>
<td>Parameter</td>
<td>Description</td>
<td>Data Unit</td>
<td>Measurement Frequency</td>
<td>Measured (m), Calculated (c), Operating Records (o), Reference (r)</td>
<td>Comment</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>period captured from converted dewatering wells that were mined through during earlier reporting periods</td>
<td></td>
<td></td>
<td></td>
<td>Equation 5.38</td>
<td></td>
</tr>
<tr>
<td>5.34</td>
<td>CONS\textsubscript{ELEC}</td>
<td>Additional electricity consumption for the capture and destruction of methane during the reporting period</td>
<td>MWh</td>
<td>Every reporting period</td>
<td>o</td>
<td>From electricity use records</td>
</tr>
<tr>
<td>5.34</td>
<td>CONS\textsubscript{HEAT}</td>
<td>Additional heat consumption for the capture and destruction of methane during the reporting period</td>
<td>Volume</td>
<td>Every reporting period</td>
<td>o</td>
<td>From purchased heat use records</td>
</tr>
<tr>
<td>5.34</td>
<td>CONS\textsubscript{FF}</td>
<td>Additional fossil fuel consumption for the capture and destruction of methane during the reporting period</td>
<td>Volume</td>
<td>Every reporting period</td>
<td>o</td>
<td>From fuel use records</td>
</tr>
<tr>
<td>5.36</td>
<td>$PSW_{P_{\text{all}}}^i$</td>
<td>Volume of MG from pre-mining surface wells sent to qualifying and non-qualifying devices for destruction through use during the reporting period. For qualifying devices, all MG, whether from a mined through well or not must be quantified regardless of whether or not the well is mined through by the</td>
<td>scf</td>
<td>Every reporting period</td>
<td>m, c</td>
<td>Adjusted to standard conditions, if applicable, to STP using Equation 5.38</td>
</tr>
<tr>
<td>5.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

131
<table>
<thead>
<tr>
<th>Eq. #</th>
<th>Parameter</th>
<th>Description</th>
<th>Data Unit</th>
<th>Measurement Frequency</th>
<th>Measured (m), Calculated (c), Operating Records (o), Reference (r)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.36</td>
<td>ECW_{P,all,i}</td>
<td>Volume of MG from existing coal bed methane wells that would otherwise be shut-in and abandoned as a result of encroaching mining sent to qualifying and non-qualifying devices for destruction through use i during the reporting period. For qualifying devices, all MG,</td>
<td>scf</td>
<td>Every reporting period</td>
<td>m, c</td>
<td>Adjusted to standard conditions, if applicable, to STP using Equation 5.38</td>
</tr>
<tr>
<td>5.37</td>
<td>AW_R_{P,all,i}</td>
<td>Volume of MG from abandoned wells that are reactivated sent to qualifying and non-qualifying devices for destruction through use i during the reporting period. For qualifying devices, all MG,</td>
<td>scf</td>
<td>Every reporting period</td>
<td>m, c</td>
<td>Adjusted to standard conditions, if applicable, to STP using Equation 5.38</td>
</tr>
<tr>
<td>Eq. #</td>
<td>Parameter</td>
<td>Description</td>
<td>Data Unit</td>
<td>Measurement Frequency</td>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>5.36</td>
<td>CDW,all,i</td>
<td>Volume of MG from converted dewatering wells sent to qualifying and non-qualifying devices for destruction through use i during the reporting period. For qualifying devices, all MG, whether from a mined through well or not must be quantified regardless of whether or not the well is mined through by the end of the reporting period.</td>
<td>scf</td>
<td>Every reporting period</td>
<td>m, c</td>
<td>Adjusted to standard conditions, if applicable, to STP using Equation 5.38</td>
</tr>
<tr>
<td>5.38</td>
<td>MG,actual,y</td>
<td>Measured average flow rate or total volume of MG collected for and sent to a destruction device during time interval y at utilization type i.</td>
<td>(scf/unit of time) acfm or acf</td>
<td>Continuously</td>
<td>m</td>
<td>Adjusted, if applicable, to STP using Equation 5.38</td>
</tr>
<tr>
<td>5.38</td>
<td>TMG,y</td>
<td>Measured absolute temperature of MG for the time interval y, °R=°F +459.67</td>
<td>°R</td>
<td>Continuously</td>
<td>m, c</td>
<td>Readings taken at least every hour to calculate temperature for time interval y</td>
</tr>
<tr>
<td>5.38</td>
<td>PMG,y</td>
<td>Measured absolute pressure of MG for the time interval y</td>
<td>atm</td>
<td>Continuously</td>
<td>m, c</td>
<td>Readings taken at least every hour to calculate temperature pressure for...</td>
</tr>
<tr>
<td>Eq. #</td>
<td>Parameter</td>
<td>Description</td>
<td>Data Unit</td>
<td>Measurement Frequency</td>
<td>Measured (m) Calculated (c), Measured (m), Operating Records (o), Reference (r)</td>
<td>Comment</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>time interval y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Mine gas from each methane source (i.e., pre-mining surface wells drilled into the mine during active mining operations, pre-mining in-mine boreholes drilled into the mine during active mining operations, post-mining gob wells drilled into the mine during active mining operations, and newly drilled surface wells) must be monitored separately prior to interconnection with other MG sources. The volumetric or mass gas flow, methane concentration, temperature, and pressure must be monitored and recorded separately for each methane source.

(b) AMM from the drainage system must be measured continuously. Offset Project Operators must record the AMM flow rate every 15 minutes, adjusted for temperature and pressure, and record the totalized mine gas volume or mass at least daily, adjusted for temperature and pressure.

(b) AMM delivered to a destruction device must be measured continuously. Offset Project Operators must record the AMM flow rate every 15 minutes, adjusted for temperature and pressure, and record the totalized mine gas volume or mass at least daily, adjusted for temperature and pressure. The flow rate of MG sent to a destruction device must be measured continuously, recorded every 15 minutes, and adjusted for temperature and pressure, if applicable, to calculate daily volume of MG sent to a destruction device. The flow of gas to each destruction device must be monitored separately for each destruction device, unless:

1. A project consists of destruction devices that are of identical efficiency and verified to be operational throughout the reporting period; then a single flow meter may be used to monitor gas flow to all destruction devices; or

2. A project consists of destruction devices that are not of identical efficiency, in which case the methane destruction efficiency of the least
efficient destruction device must be used as the methane destruction efficiency for all destruction devices monitored by that meter.

(c) If a project using a single meter to monitor gas flow to multiple destruction devices has any periods of time when not all destruction devices downstream of a single flow meter are operational, methane destruction from the set of downstream devices during these periods of time will only be eligible provided that the offset verifier can confirm all of the following requirements and conditions are met:

(1) The methane destruction efficiency of the least efficient downstream destruction device in operation must be used as the methane destruction efficiency for all destruction devices downstream of the single meter; and

(2) All devices are either equipped with valves on the input gas line that close automatically if the device becomes non-operational (requiring no manual intervention), or designed in such a manner that it is physically impossible for gas to pass through while the device is non-operational; and

(3) For any period of time during which one or more downstream destruction devices are not operational, it must be documented that the remaining operational devices have the capacity to destroy the maximum gas flow recorded during the period.

(d) The methane concentration of the MG extracted from each methane source must be measured continuously, and recorded every 15 minutes and averaged at least daily to calculate daily average methane concentration.

(e) If required in order to adjust the flow rate, volume, or mass of AMM, the temperature and pressure of the AMM must be measured continuously and recorded at least every hour to calculate hourly temperature and pressure.

(f) Offset Project Operators and/or Authorized Project Designees that elect to seek written approval from the Executive Officer to derive mine-specific hyperbolic emission rate decline curve coefficients using measured data from pre-existing wells or boreholes open to the atmosphere and natural gas seeps, rather than using default decline curve coefficients in table 5.1, must adhere to the following:
Offset Project Operators and Authorized Project Designees must monitor the:

(A) MG flow rates;
(B) local barometric pressure; and
(C) methane concentration of MG.

Data must be monitored over a 72 hour period on at least three separate occasions each separated by a minimum of 90 days.

MG flow rates and the barometric pressure must be monitored continuously and recorded at least on an hourly basis.

Methane concentration must be measured at least daily.

Offset Project Operators and Authorized Project Designees must monitor the parameters prescribed in Table 6.4. Data measurements may be recorded in an alternative unit, but must be appropriately converted to specified unit for use in equations provided in chapter 5.

Table 6.4. Abandoned Underground Mine Methane Recovery Activity Monitoring Parameters – Quantification Methodology

<table>
<thead>
<tr>
<th>Eq. #</th>
<th>Parameter</th>
<th>Description</th>
<th>Data Unit</th>
<th>Measurement Frequency</th>
<th>Measured (m), Calculated (c), Operating Records (o), Reference (r)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.42</td>
<td>DE<sub>i</sub></td>
<td>Efficiency of methane destruction device i</td>
<td>%</td>
<td>AnnuallyEach reporting period</td>
<td>r or m</td>
<td>Default methane destruction efficiencies provided in Appendix B or site-specific methane destruction efficiencies approved by the Executive Officer.</td>
</tr>
<tr>
<td>5.48</td>
<td>5.49 5.50</td>
<td>5.42 PSW<sub>B,i</sub></td>
<td>Volume of MG from pre-mining surface wells that would have been sent to non-qualifying devices for</td>
<td>scf</td>
<td>Estimated at offset project commencement; calculated annuallyEach reporting period</td>
<td>c, m, c</td>
</tr>
<tr>
<td>Eq. #</td>
<td>Parameter</td>
<td>Description</td>
<td>Data Unit</td>
<td>Measurement Frequency</td>
<td>Measured (m) Calculated (c), Operating Records (o), Reference (r)</td>
<td>Comment</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>destruction through use i during the reporting period</td>
<td></td>
<td>device continues to operate after project start</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.42</td>
<td>PIB<sub>i</sub></td>
<td>Volume of MG from pre-mining in-mine boreholes that would have been sent to non-qualifying devices for destruction through use i during the reporting period</td>
<td>scf</td>
<td>Estimated at offset project commencement; calculated annually each reporting period if non-qualifying device continues to operate after project start</td>
<td>e, m, c</td>
<td>The largest of the three values calculated per section 5.4.1(f).</td>
</tr>
<tr>
<td>5.42</td>
<td>PGW<sub>i</sub></td>
<td>Volume of MG from post-mining gob wells that would have been sent to non-qualifying devices for destruction through use i during the reporting period</td>
<td>scf</td>
<td>Estimated at offset project commencement; calculated annually each reporting period if non-qualifying device continues to operate after project start</td>
<td>e, m, c</td>
<td>The largest of the three values calculated per section 5.4.1(f).</td>
</tr>
<tr>
<td>5.42</td>
<td>NSW<sub>i</sub></td>
<td>Volume of MG from newly drilled surface wells that would have been sent to non-qualifying devices for destruction through use i during the reporting period</td>
<td>scf</td>
<td>Estimated at offset project commencement; calculated annually each reporting period if non-qualifying device continues to operate after project start</td>
<td>c, m, m, c</td>
<td>The largest of the three values calculated per section 5.4.1(f).</td>
</tr>
<tr>
<td>5.42</td>
<td>C<sub>CH4,i</sub></td>
<td>Hourly/Daily average methane concentration of mine gas sent to a destruction device</td>
<td>(scf CH<sub>4</sub>/scf)</td>
<td>Continuously</td>
<td>e, m, c</td>
<td>Readings taken every 15 minutes to calculate average methane concentration per day; calculated separately for each methane</td>
</tr>
<tr>
<td>Eq. #</td>
<td>Parameter</td>
<td>Description</td>
<td>Data Unit</td>
<td>Measurement Frequency</td>
<td>Measured (m)</td>
<td>Comment</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------------------</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>5.42</td>
<td>DV<sub>i</sub></td>
<td>Daily volume of mine gas sent to a destruction device</td>
<td>(scf/day)</td>
<td>Continuously</td>
<td>m, c</td>
<td>Readings taken every 15 minutes to calculate average flow volume per day, adjusted to standard conditions, if applicable, using equation 5.50. Calculated separately for each methane source.</td>
</tr>
<tr>
<td>5.44</td>
<td>ER<sub>AMM</sub></td>
<td>Average ventilation air emission rate of AMM over the life of the mine calculated using available data collected by MSHA</td>
<td>Mscf/d</td>
<td>At offset project commencement</td>
<td>o</td>
<td>Available from MSHA</td>
</tr>
<tr>
<td>5.44</td>
<td>t</td>
<td>Time elapsed from the date of mine closure to midpoint of the reporting period</td>
<td>days</td>
<td>At offset project commencement</td>
<td>o</td>
<td>Available from public agency (i.e., MSHA, EPA, etc.)</td>
</tr>
<tr>
<td>5.44</td>
<td>RP<sub>days</sub></td>
<td>Days in reporting period</td>
<td>days</td>
<td>Annually/Each reporting period</td>
<td>o</td>
<td></td>
</tr>
<tr>
<td>5.45</td>
<td>ER<sub>meas,y</sub></td>
<td>Measured emission rate of MG venting from pre-existing wells or boreholes open to the atmosphere during time interval y</td>
<td>(scf/unit of time)</td>
<td>Continuously</td>
<td>m</td>
<td>Adjusted, if applicable, to STP using Equation 5.45</td>
</tr>
<tr>
<td>5.45</td>
<td>T<sub>MG,y</sub></td>
<td>Measured temperature of MG for the time interval y</td>
<td>°R</td>
<td>Continuously</td>
<td>m, c</td>
<td>Readings taken at least every hour to calculate</td>
</tr>
<tr>
<td>Eq. #</td>
<td>Parameter</td>
<td>Description</td>
<td>Data Unit</td>
<td>Measurement Frequency</td>
<td>Measured (m) Calculated (c), Measured (m), Operating Records (o), Reference (r)</td>
<td>Comment</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>---</td>
<td>-----------</td>
<td>-----------------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>°R = °F + 460</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.45</td>
<td>PMG,y</td>
<td>Measured pressure of MG for the time interval y</td>
<td>atm</td>
<td>Continuously</td>
<td>m, c</td>
<td></td>
</tr>
<tr>
<td>5.46</td>
<td>CONSELEC</td>
<td>Additional electricity consumption for the capture and destruction of methane during the reporting period</td>
<td>MWh</td>
<td>Every reporting period</td>
<td>o</td>
<td></td>
</tr>
<tr>
<td>5.46</td>
<td>CONSHEAT</td>
<td>Additional heat consumption for the capture and destruction of methane during the reporting period</td>
<td>Volume</td>
<td>Every reporting period</td>
<td>o</td>
<td></td>
</tr>
<tr>
<td>5.46</td>
<td>CONSFF</td>
<td>Additional fossil fuel consumption for the capture and destruction of methane during the reporting period</td>
<td>Volume</td>
<td>Every reporting period</td>
<td>o</td>
<td></td>
</tr>
<tr>
<td>5.48</td>
<td>PSWP,i</td>
<td>Volume of MG from pre-mining surface wells sent to qualifying and non-qualifying devices for destruction through use i during the reporting period</td>
<td>scf</td>
<td>Every reporting period</td>
<td>m, c</td>
<td></td>
</tr>
<tr>
<td>5.48</td>
<td>PIBP,i</td>
<td>Volume of MG from pre-mining in-mine boreholes sent to by qualifying and non-qualifying</td>
<td>scf</td>
<td>Every reporting period</td>
<td>m, c</td>
<td></td>
</tr>
<tr>
<td>Eq. #</td>
<td>Parameter</td>
<td>Description</td>
<td>Data Unit</td>
<td>Measurement Frequency</td>
<td>Measured (m) Calculated (c), Measured (m), Operating Records (o), Reference (r)</td>
<td>Comment</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>5.48</td>
<td>PGW$_{P,i}$</td>
<td>Volume of MG from post-mining gob wells sent to qualifying and non-qualifying devices for destruction through use i during the reporting period</td>
<td>scf</td>
<td>Every reporting period</td>
<td>m, c</td>
<td>Adjusted to standard conditions, if applicable, to STP using Equation 5.5450</td>
</tr>
<tr>
<td>5.49</td>
<td>NSWP$_{P,i}$</td>
<td>Volume of MG from newly drilled surface wells sent to qualifying and non-qualifying devices for destruction through use i during the reporting period</td>
<td>scf</td>
<td>Every reporting period</td>
<td>m, c</td>
<td>Adjusted to standard conditions, if applicable, to STP using Equation 5.5450</td>
</tr>
<tr>
<td>5.50</td>
<td>MG${mean,ij}$, MG${actual,ij}$</td>
<td>Measured average flow rate or total volume of MG collected for the then sent to a destruction device during time interval y at utilization type i</td>
<td>(scf/unit of time) acfm or acf</td>
<td>Continuously</td>
<td>m</td>
<td>Adjusted, if applicable, to STP using Equation 5.51</td>
</tr>
<tr>
<td>5.50</td>
<td>T$_{MG,y}$</td>
<td>Measured absolute temperature of MG for the time interval y, $°R = °F + 459.67$</td>
<td>°R</td>
<td>Continuously</td>
<td>m, c</td>
<td>Readings taken at least every hour to calculate temperature for time interval y</td>
</tr>
<tr>
<td>5.50</td>
<td>P$_{MG,y}$</td>
<td>Measured absolute pressure of MG for the time interval y</td>
<td>atm</td>
<td>Continuously</td>
<td>m, c</td>
<td>Readings taken at least every hour to calculate pressure for time interval y</td>
</tr>
</tbody>
</table>

Monitoring Parameters for Deriving Mine-Specific Hyperbolic Emission Rate Decline Curve Coefficients

140
<table>
<thead>
<tr>
<th>Eq. #</th>
<th>Parameter</th>
<th>Description</th>
<th>Data Unit</th>
<th>Measurement Frequency</th>
<th>Measured (m) Calculated (c), Measured (m), Operating Records (o), Reference (r)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MG flow rate</td>
<td>(mMscf/d)</td>
<td>Continuously</td>
<td>m, c</td>
<td>Recordings taken at least on an hourly basis during the monitoring period</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Local barometric pressure</td>
<td>atm</td>
<td>Continuously</td>
<td>m</td>
<td>Recordings taken at least on an hourly basis during the monitoring period</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measured methane concentration of mine gas captured from methane source</td>
<td>scf CH₄/scf CH₄/scf</td>
<td>Continuously</td>
<td>m</td>
<td>Readings taken at least daily during the monitoring period</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 7. Reporting

In addition to the offset project requirements set forth in sections 95975 and 95976 the Regulation, mine methane capture offset projects must adhere to the project listing and reporting eligibility requirements below.

§-7.1. Listing Requirements:

(a) Listing information must be submitted by the Offset Project Operator or Authorized Project Designee no later than the date on which the Offset Project Operator or Authorized Project Designee submits the first Offset Project Data Report.

(b) In order for a mine methane capture Compliance Offset Project to be listed, the Offset Project Operator or Authorized Project Designee must submit the information required by section 95975 the Regulation, in addition to the following information:

(1) Offset project name.
(2) Mine methane capture activity type (i.e., active underground mine VAM activity, active underground mine methane drainage activity, active surface mine methane drainage activity, or abandoned underground mine methane recovery activity).

(3) Contact information including name, phone number, mailing address, physical address (if different from mailing address), and email address and, if applicable, organizational affiliation for the:
 (A) Offset Project Operator; and
 (B) Authorized Project Designee (if applicable);
 (C) The person submitting the information; and
 (D) Any technical consultants.

(4) CITSS ID number for the:
 (A) Offset Project Operator; and
 (B) Authorized Project Designee (if applicable).

(5) Contact information including name, phone number, email address and, if applicable, the organizational affiliation for:
 (A) the person submitting the information; and
 (B) technical consultants.

(6) Date of form completion.

(7) *Name and mailing address of mine owner(s) and parent company(ies), if different from mine owner.

(8) *Name and mailing address of surface owner(s), if different from mine owner.

(9) *Name and mailing address of mine methane owner(s), if different from mine owner.

(10) *Name and mailing address of mine operator(s), if different from mine owner.

(11) *Name and mailing address of methane destruction system owner(s), if different from mine owner, Offset Project Operator, or Authorized Project Designee.

(12) Other parties with a material interest in the mine methane.
(12) A description of the mine and resource ownership and operation structures.

(13) *Documentation (e.g., title report, coal lease, gas lease, etc.) showing the Offset Project Operator’s legal authority to implement the offset project (e.g., title report, coal lease, gas lease, permit, or contract agreement).

(14) *Physical address and latitude and longitude coordinates and physical address (if available) of mine site.

(15) *Indicate if the project occurs on private or public lands and further specify if the project occurs on any of the following categories of land:

(A) Land that is owned by, or subject to an ownership or possessory interest of a Tribe;

(B) Land that is “Indian lands” of a Tribe, as defined by 25 U.S.C. §81(a)(1); or

(C) Land that is owned by any person, entity, or Tribe, within the external borders of such Indian lands.

(16) *If the project is located on one the above categories of land, a description and copies of documentation demonstrating that the land is owned by (or subject to an ownership or possessory interest of) a tribe or private entities.

(17) *MSHA mine identification number.

(18) *MSHA classifications.

(A) Coal or metal and nonmetal;

(B) Underground or surface; and

(C) Active or abandoned.

(20) *Mining method(s) employed (e.g., longwall, room and pillar, or open-pit, etc.).
(22)(21) *Average annual mineral production (specify mineral produced and unit).
(23)(22) *Year of initial production.
(24)(23) *Year of closure (estimate if mine is not yet closed).
(25)(24) Name of state and/or federal agency(ies) responsible for issuing mine leases and/or permits.
(26)(25) List any permits obtained, or to be obtained, to build and operate the project.
(27) For active underground mine VAM activities, active underground mine methane drainage activities, and active surface mine methane drainage activities, up-to-date mine plan, mine ventilation plan, and mine map submitted to MSHA and/or appropriate state or federal agency responsible for mine leasing/permitting.
(28) *For abandoned mine methane recovery activities, the final mine maps submitted to appropriate state or federal environmental or mining agencies upon closure.
(29)(26) Offset project commencement date and specification of the action(s) that identify the commencement date.
(30)(27) First reporting period.
(31)(28) A qualitative characterization and quantitative estimate of the baseline emissions at the mine including an explanation of how the quantitative estimate was reached.
(32)(29) Describe any mine methane destruction occurring at the mine prior to the offset project commencement date. List the source of the methane destroyed, destruction device(s) used, and device operation dates.
(33)(30) A description of the project activities that will lead to GHG emission reductions including the methane end-use management option(s), destruction devices, and metering and data collection systems to be employed by the project.
(34)(32) For active underground mine VAM activities, state whether supplemental methane will be used.
(35)(31) Declaration that the project is not being implemented as a result of any federal, state or local law, statute, regulation, court order, or other legally binding mandate.

(36)(32) *Disclose if any GHG reductions associated with the offset project have ever been registered with or claimed by another registry or program, or sold to a third party prior to our listing. Identify the registry or program as well as the vintage(s) of credits issued, reporting period(s), and verification bodies that have performed verification services.

(37)(33) State whether the project is transitioning to the Compliance Offset Protocol Mine Methane Capture Projects, after previously being listed as an early action offset project.

(38) *List any programs participated in by the mine owner and operator, either in the past or present, that encourage the capture and destruction of mine methane. If applicable, include programs at mine locations other than the project site. Specify dates of participation for each program.

(39)(34) *Bird’s-eye view map of the mine site that includes:

(A) Longitude and latitude coordinates.

(B) Governing jurisdictions.

(C) Public and private roads.

(D) Mine permit boundary.

(E) Mine lease boundary, if applicable.

(F) Location of existing ventilation shafts. For active underground mine VAM activities, indicate whether or not the shaft is part of the project.

(G) Planned location of additional ventilation shafts. For active underground mine VAM activities, indicate whether or not the shaft will be part of the project.

(H) Location of existing wells and boreholes. For active underground mine methane drainage activities, active surface mine methane drainage activities, and abandoned underground mine methane
recovery activities, assign a number to each existing well/borehole and, on a separate sheet of paper, indicate:

1. the source type (i.e., pre-mining surface well, pre-mining in-mine borehole, post-mining gob well, existing coal bed methane (CBM) well that would otherwise be shut-in and abandoned, abandoned well that is re-activated, and converted dewatering wells);

2. whether or not the well/borehole is part of the project; and

3. for pre-mining surface wells, specify whether or not the well is mined through and when the well was, or is expected to be, mined through.

(I) Location of additional wells and boreholes planned to be drilled prior to offset project commencement. For active underground mine methane drainage activities, active surface mine methane drainage activities, and abandoned underground mine methane recovery activities, assign a number to each well/borehole and, on a separate sheet of paper, indicate:

1. the source type (i.e., pre-mining surface well, pre-mining in-mine borehole, post-mining gob well);

2. whether or not the well/borehole will be part of the project; and

3. for pre-mining surface wells, specify when the well is expected to be mined through.

(J) Location of existing equipment used to collect, treat, store, meter, and destroy mine methane. Assign a number to each piece of equipment and, on a separate sheet of paper, indicate:

1. the manufacturer and name of each piece of equipment;

2. the purpose of each piece of equipment;

3. the installation date of each piece of equipment;
4. for metering equipment, the date of the most recent inspection, cleaning and calibration of each piece of equipment;

5. for destruction devices, whether it is a qualifying or non-qualifying destruction device in accordance with Chapter 2;

6. for non-qualifying destruction devices that were operating at the mine prior to offset project commencement and during the year immediately preceding offset project commencement, provide the volume or mass of VAM/MM/SMM/AMM destroyed by the device in the three-year period prior to offset project commencement (or during the length of time the devices are operational, if less than three years), averaged according to the length of the reporting period; and

7. for destruction devices that have been source-tested to develop site-specific device destruction efficiency, the date of the test and the resulting destruction efficiency.

(K) Location of additional equipment used to collect, treat, store, meter, and destroy mine methane planned to be installed prior to offset project commencement. Assign a number to each piece of equipment and, on a separate sheet of paper, indicate:

1. the manufacturer, name/model number, and serial number of each piece of equipment;

2. the purpose of each piece of equipment;

3. the expected installation date of each piece of equipment; and

4. for destruction devices, whether it is a qualifying or non-qualifying destruction device in accordance with Chapter 2.

(35) For active underground mine VAM activities, a diagram of the project site that includes:
(A) Location of ventilation shafts included in the project. Assign a number to each piece of equipment and, on a separate sheet of paper:
1. Indicate whether the ventilation shaft is currently existing or planned; and
2. Indicate whether or not the ventilation shaft was connected to a non-qualifying destruction device at any point during the year prior to offset project commencement.

(B) Location of equipment used to collect, treat, store, meter, and destroy ventilation air methane in use prior to offset project commencement. Assign a number to each piece of equipment and, on a separate sheet of paper:
1. Indicate whether or not the piece of equipment will be part of the project;
2. Provide a description, including the purpose, of the piece of equipment;
3. For destruction devices, provide the operation dates (approximate dates are acceptable);
4. For destruction devices, indicate whether it is a qualifying or non-qualifying destruction device in accordance with chapter 2;
4. For non-qualifying destruction devices that were operating at the mine prior to offset project commencement and during the year immediately preceding offset project commencement, provide the volume or mass of ventilation air sent to the device during the three-year period prior to offset project commencement (or during the length of time the device is operational, if less than three years), adjusted for temperature and pressure using equation 5.11, if applicable, averaged according to the length of the initial reporting period; and
5. For non-qualifying destruction devices that were operating at the mine prior to offset project commencement and during the year immediately preceding offset project commencement, provide the volume or mass of ventilation air sent to the device during the time period a law, regulation, or legally binding mandate, in place for less than three years prior to offset project commencement, was in effect, adjusted for temperature and pressure using equation 5.11, if applicable, and averaged according to the length of the initial reporting period.

(C) Location of equipment used to collect, treat, store, meter, and destroy ventilation air methane installed as part of the project. Assign a number to each piece of equipment and, on a separate sheet of paper:

1. Provide a description, including the purpose, of the piece of equipment;

2. For destruction devices, provide the operational date or expected operational date (approximate dates are acceptable); and

3. For destruction devices, indicate whether it is a qualifying or non-qualifying destruction device in accordance with chapter 2.

(36) *For active underground mine methane drainage activities, active surface mine methane drainage activities, and abandoned underground mine methane recovery activities, a diagram of the project site that includes:

(A) Location of wells and boreholes included in the project. Assign a number to each piece of equipment and, on a separate sheet of paper:

1. Indicate whether the well/borehole is currently existing or planned;
2. Indicate whether or not the well/borehole was connected to a non-qualifying destruction device at any point during the year prior to offset project commencement;

3. Indicate the methane source type (i.e., pre-mining surface well, pre-mining in-mine borehole, post-mining gob well, existing CBM well that would otherwise be shut-in and abandoned, abandoned well that is re-activated, or converted dewatering wells); and

4. For pre-mining surface wells, indicate whether or not the well is mined through, and when the well was, or is expected to be, mined through.

(B) Location of equipment used to collect, treat, store, meter, and destroy MM/SMM/AMM in use prior to offset project commencement. Assign a number to each piece of equipment and, on a separate sheet of paper:

1. Indicate whether or not the piece of equipment will be part of the project;

2. Provide a description, including the purpose, of the piece of equipment;

3. For destruction devices, provide the operation dates (approximate dates are acceptable);

4. For destruction devices, indicate whether it is a qualifying or non-qualifying destruction device in accordance with chapter 2;

5. For non-qualifying destruction devices that were operating at the mine prior to offset project commencement and during the year immediately preceding offset project commencement, provide the volume or mass of mine gas sent to the device during the three-year period prior to offset project commencement (or during the length of time the device is operational, if less than three years), adjusted for
temperature and pressure using equation 5.11, if applicable, averaged according to the length of the initial reporting period; and

6. For non-qualifying destruction devices that were operating at the mine prior to offset project commencement and during the year immediately preceding offset project commencement, provide the volume or mass of mine gas sent to the device during the time period a law, regulation, or legally binding mandate, in place for less than three years prior to offset project commencement, was in effect, adjusted for temperature and pressure using equation 5.11, if applicable, and averaged according to the length of the initial reporting period.

(C) Location of equipment used to collect, treat, store, meter, and destroy MM/SMM/AMM installed as part of the project. Assign a number to each piece of equipment and, on a separate sheet of paper:

1. Provide a description, including the purpose, of the piece of equipment;
2. For destruction devices, provide the operational date or expected operational date (approximate dates are acceptable); and
3. For destruction devices, indicate whether it is a qualifying or non-qualifying destruction device in accordance with chapter 2.

(40) A geologic cross section diagram showing aboveground and underground conditions including:

(A) Mined and unmined coal seam(s) from the surface to 50 meters below the lowest mined seam.
(B) Underground mine extents according to an up-to-date mine plan.
(C) Include the well depth of completion relative to the lowermost mined seam.

(D) Mining progress indicating direction of mining.

(E) Aboveground mine boundary.

(F) For active underground mine VAM activities, all existing and planned ventilation shafts (labeled using the same numbering system as the map).

(G) For active underground mine methane drainage activities, active surface mine methane drainage activities and abandoned underground mine methane recovery activities, all existing and planned wells/boreholes (labeled using the same numbering system as the map). Include the depth and angle of existing pre-mining surface wells.

(H) Existing and planned equipment used to collect, treat, store, meter, and destroy mine methane (labeled using the same numbering system as the map).

(c) Abandoned mine methane recovery activities that are comprised of multiple mines as allowed for by section 2.4 must provide the items in section 7.1(b) marked with an asterisk (*) for each involved mine.

§ 7.2. Offset Project Data Report.

(a) Offset Project Operators or Authorized Project Designees must submit an Offset Project Data Report (OPDR) at the conclusion of each Reporting Period according to the reporting schedule in section 95976 of the Regulation.

(b) Offset Project Operators or Authorized Project Designees must submit the information required by section 95976 of the Regulation, in addition to the following information:

(1) Offset project name.

(2) ARB project ID number.

(2)(3) Mine methane capture activity type (i.e., active underground mine VAM activity, active underground mine methane drainage activity, active
surface mine methane drainage activity, or abandoned underground mine methane recovery activity).

(3)(4) Contact information including name, phone number, mailing address, physical address (if different from mailing address), and email address, and, if applicable, organizational affiliation for the:
(A) Offset Project Operator; and
(B) Authorized Project Designee (if applicable);
(C) The person submitting the information; and
(D) Any technical consultants.

(4)(5) CITSS ID number for the:
(A) Offset Project Operator; and
(B) Authorized Project Designee (if applicable).

(5) Contact information including name, phone number, email address and, if applicable, the organizational affiliation for:
(A) the person submitting the information;
(B) technical consultants.

(6) Date of form completion.

(7) Reporting period.

(8) Offset project commencement date.

(9) *Physical address and latitude and longitude coordinates of mine site.

(11)(9) *Mining method(s) employed (e.g., longwall, room and pillar, or open-pit, etc.) employed during reporting period. For abandoned underground mine methane recovery activities, mining method(s) employed while mine was active.

(12)(10) *Mineral production during reporting period (specify mineral produced and unit).
(11) Statement as to whether all the information submitted for project listing is still accurate. If not, provide updates to relevant listing information.

(12) *Statement as to whether the project has met all local, state, or federal regulatory requirements during the reporting period. If not, an explanation of the non-compliance must be provided.

(13) For active underground mine methane drainage activities and active surface mine methane drainage activities, latest mine plan and mine map submitted to appropriate state or federal agency responsible for mine leasing/permitting.

(14) For active underground mine VAM activities, state whether supplemental methane was used.

(15) Baseline emissions during the reporting period (BE), following the requirements of Chapter 5.

(16) Project emissions during the reporting period (PE), following the requirements of Chapter 5.

(17) A calculation of the total net GHG reductions for the reporting period (ER), following the requirements of Chapter 5.

(18) For each methane source:
 (A) name the destruction device that captured methane was sent to;
 (B) provide the amount of VAM or mine gas (MG) collected during the reporting period and the weighted average of methane concentration of the VAM/MG for the reporting period;
 (C) provide the amount of methane (CH₄) sent to each qualifying destruction device during the reporting period;
 (D) provide the amount of methane (CH₄) sent to each non-qualifying destruction device during the reporting period; and
 (E) for pre-mining surface wells, indicate whether the well is mined through.

(19) For active underground mine methane drainage activities and active surface mine methane drainage activities, identify all pre-mining surface
wells that were mined through during the reporting period in accordance with chapter 5.

(22) For each qualifying and non-qualifying destruction device:

(A) provide the amount of methane destroyed during the reporting period; and

(B) indicate if the gas flow metering equipment for the device internally corrects for temperature and pressure

(23) Indicate whether the project used site-specific methane destruction efficiencies and, if so, provide a description of the process of establishing these destruction efficiencies that includes the identity of any third parties involved.

(24) Declaration that the project is not being implemented as a result of any federal, state or local law, statute, regulation, court order, or other legally binding mandate.

(13) For active underground mine VAM activities, provide the:

(A) Emission reductions achieved by the project during the reporting period (ER);

(B) Volume of ventilation air that would have been sent to non-qualifying devices for destruction through use i during the reporting period (VAB,i);

(C) Volume of ventilation air sent to qualifying and non-qualifying devices for destruction through use i during the reporting period (VAP,i), reported separately for each destruction device;

(D) Weighted average of measured methane concentration of ventilation air sent to destruction devices during the reporting period (CCH4), reported separately for the baseline and project scenarios;

(E) Hours during which destruction device was operational during reporting period (y), reported separately for each destruction device in the baseline and project scenarios;
(F) Hourly average flow rate of ventilation air sent to a device for
destruction through use i during the reporting period \((VA_{\text{flow,}i,y})\),
reported separately for each destruction device in the baseline and
project scenarios;

(G) Hourly average flow rate of cooling air sent to a destruction device
after the metering point of the ventilation air stream during period y
\((CA_{\text{flow,}i,y})\), reported separately for each destruction device in the
baseline and project scenarios, indicating whether flow rate was
monitored or if default maximum quantity was used;

(H) Weighted average of measured methane concentration of exhaust
gas emitted from destruction device during the reporting period
\((C_{\text{CH4,exhaust,}i})\), reported separately for each destruction device in the
baseline and project scenarios;

(I) Volume of mine gas extracted from a methane drainage system
and sent with ventilation air to qualifying and non-qualifying devices
for destruction during the reporting period \((MG_{\text{supply,}i})\), reported
separately for each destruction device in the baseline and project
scenarios;

(J) Weighted average of measured methane concentration of captured
mine gas sent to qualifying and non-qualifying destruction devices
with ventilation air during the reporting period \((C_{\text{CH4,MG}})\), reported
separately for each destruction device in the baseline and project
scenarios; and

(K) Quantities of additional electricity \((\text{CONS}_{\text{ELEC}})\), heat \((\text{CONS}_{\text{HEAT}})\),
and fossil fuels \((\text{CONS}_{\text{FF}})\) consumed by the project and the \(\text{CO}_2\)
emission factors \((\text{CEF}_{\text{ELEC}})\), \((\text{CEF}_{\text{HEAT}})\), and \((\text{CEF}_{\text{FF}})\) applied.

(14) For active underground mine methane drainage activities, provide the:

(A) Emission reductions achieved by the project during the reporting
period \((ER)\);

(B) Volume of mine gas that would have been sent to non-qualifying
devices for destruction through use i during the reporting period,
(PSW_{B,i}, PIB_{B,i}, PGW_{B,i}) reported separately for each methane source and destruction device;

(C) Volume of mine gas sent to qualifying and non-qualifying devices for destruction through use i during the reporting period (PSW_{P,i}, PIB_{P,i}, PGW_{P,i}), reported separately for each methane source and destruction device;

(D) Weighted average of measured methane concentration of mine gas sent to destruction devices during the reporting period \(C_{CH4} \) reported separately for each methane source in the baseline and project scenarios;

(E) For pre-mining surface wells, identify all wells included in the project that were mined through during the reporting period and provide the values used for the following terms: PSWNqd_{i}, PSWe_{pre,i}, PSWe_{post,i}, and PSWP_{all,i};

(F) Volume of mine gas extracted from a methane drainage system and sent with ventilation air to qualifying and non-qualifying devices for destruction during the reporting period (MG_{SUPP,i}), reported separately for the baseline and project scenarios;

(G) Weighted average of measured methane concentration of captured mine gas sent with ventilation air to qualifying and non-qualifying destruction devices during the reporting period \(C_{CH4,MS} \), reported separately for the baseline and project scenarios;

(H) Any site-specific methane destruction efficiencies used and a description of the process of establishing these methane destruction efficiencies that includes the identity of any third parties involved; and

(I) Quantities of additional electricity (CONS_{ELEC}), heat (CONS_{HEAT}), and fossil fuels (CONS_{FF}) consumed by the project and the \(CO_2 \) emission factors (CEF_{ELEC}, CEF_{HEAT}, and CEF_{FF}) applied.

(15) For active surface mine methane drainage activities, provide the:
(A) Emission reductions achieved by the project during the reporting period (ER);

(B) Volume of mine gas that would have been sent to non-qualifying devices for destruction through use i during the reporting period \((PSW_{B,i}, PIB_{B,i}, ECW_{B,i}, AWR_{B,i}, CDW_{B,i})\), reported separately for each methane source and destruction device;

(C) Volume of mine gas sent to qualifying and non-qualifying devices for destruction through use i during the reporting period \((PSW_{P,i}, PIB_{P,i}, ECW_{P,i}, AWR_{P,i}, CDW_{P,i})\), reported separately for each methane source and destruction device;

(D) Weighted average of measured methane concentration of mine gas sent to destruction devices during the reporting period \((C_{CH4})\), reported separately for each methane source and destruction device in the baseline and project scenario;

(E) For pre-mining surface wells, identify all wells included in the project that were mined through during the reporting period and provide the values used for the following terms: \(PSW_{nqdi}, PSW_{pre,i}, PSW_{post,i}, \text{ and } PSW_{all,i}\);

(F) For existing coal bed methane wells that would otherwise be shut-in and abandoned as a result of encroaching mining, identify all wells included in the project that were mined through during the reporting period and provide the values used for the following terms: \(ECW_{nqdi}, ECW_{pre,i}, ECW_{post,i}, \text{ and } ECW_{all,i}\);

(G) For abandoned wells that are reactivated, identify all wells included in the project that were mined through during the reporting period and provide the values used for the following terms: \(AWR_{nqdi}, AWR_{pre,i}, AWR_{post,i}, \text{ and } AWR_{all,i}\);

(H) For converted dewatering wells that are reactivated, identify all wells included in the project that were mined through during the reporting period and provide the values used for the following terms: \(CDW_{nqdi}, CDW_{pre,i}, CDW_{post,i}, \text{ and } CDW_{all,i}\).
(I) Any site-specific methane destruction efficiencies used and a description of the process of establishing these methane destruction efficiencies that includes the identity of any third parties involved; and

(J) Quantities of additional electricity (CONS_ELEC), heat (CONS_HEAT), and fossil fuels (CONS_FF) consumed by the project and the CO$_2$ emission factors (CEF_ELEC), (CEF_HEAT), and (CEF_FF) applied.

(16) For abandoned underground mine methane recovery activities, provide the:

(A) Emission reductions achieved by the project during the reporting period (ER);

(B) Volume of mine gas that would have been sent to non-qualifying devices for destruction through use i during the reporting period ($\text{PSW}_{B,i}$, $\text{PIW}_{B,i}$, $\text{ECW}_{B,i}$, $\text{AWR}_{B,i}$, $\text{CDW}_{B,i}$), reported separately for each methane source and destruction device;

(C) Volume of mine gas sent to qualifying and non-qualifying devices for destruction through use i during the reporting period ($\text{PSW}_{P,i}$, $\text{PIW}_{P,i}$, $\text{ECW}_{P,i}$, $\text{AWR}_{P,i}$, $\text{CDW}_{P,i}$), reported separately for each methane source and destruction device;

(D) Weighted average of measured methane concentration of mine gas sent to destruction devices during the reporting period (C_{CH_4}), reported separately for each methane source in the baseline and project scenarios;

(E) Any site-specific methane destruction efficiencies used and a description of the process of establishing these methane destruction efficiencies that includes the identity of any third parties involved; and

(F) Quantities of additional electricity (CONS_ELEC), heat (CONS_HEAT), and fossil fuels (CONS_FF) consumed by the project and the CO$_2$ emission factors (CEF_ELEC), (CEF_HEAT), and (CEF_FF) applied.
Abandoned mine methane recovery activities that are comprised of multiple mines as allowed for by section 2.4 must provide the items in section 7.2(b) marked with an asterisk (*) for each involved mine.

Chapter 8. Verification

(a) All Offset Project Data Reports are subject to regulatory verification as set forth in section 95977 of the Regulation by an ARB accredited offset verification body.

(b) The Offset Project Data Reports must receive a positive or qualified positive verification statement to be issued ARB or registry offset credits.

(c) Offset Project Operators or Authorized Project Designees are responsible for producing mine and project records requested by the offset project verifier, which could include, but is not limited to, the following:

1. Mine plans;
2. Mine ventilation plans;
3. Mine maps;
4. Mine operating permits, leases (if applicable), and air, water, and land use permits;
5. Inspection, cleaning, and calibration records for metering equipment; and
6. Source testing records for destruction devices that use site-specific methane destruction efficiencies.
Appendix A. Emission Factors – Quantification Methodology

Table A.1 CO₂ Emission Factors for Fossil Fuel Use

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Default High Heat Value</th>
<th>Default CO₂ Emission Factor (kg CO₂/mm MMBtu)</th>
<th>Default CO₂ Emission Factor (kg CO₂/short ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal and Coke</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthracite</td>
<td>25.09</td>
<td>103.54</td>
<td>2597.819</td>
</tr>
<tr>
<td>Bituminous</td>
<td>24.93</td>
<td>93.40</td>
<td>2328.462</td>
</tr>
<tr>
<td>Subbituminous</td>
<td>17.25</td>
<td>97.02</td>
<td>1673.595</td>
</tr>
<tr>
<td>Lignite</td>
<td>14.21</td>
<td>96.36</td>
<td>1369.276</td>
</tr>
<tr>
<td>Coke</td>
<td>24.80</td>
<td>102.04</td>
<td>2530.592</td>
</tr>
<tr>
<td>Mixed (Commercial sector)</td>
<td>21.39</td>
<td>95.26</td>
<td>2037.611</td>
</tr>
<tr>
<td>Mixed (Industrial coking)</td>
<td>26.28</td>
<td>93.65</td>
<td>2461.122</td>
</tr>
<tr>
<td>Mixed (Electric Power sector)</td>
<td>19.73</td>
<td>94.38</td>
<td>1862.117</td>
</tr>
<tr>
<td>Natural Gas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Weighted U.S. Average)</td>
<td></td>
<td>53.02</td>
<td>0.055</td>
</tr>
<tr>
<td>Petroleum Products</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distillate Fuel Oil No. 1</td>
<td>0.139</td>
<td>73.25</td>
<td>10.182</td>
</tr>
<tr>
<td>Distillate Fuel Oil No. 2</td>
<td>0.138</td>
<td>73.96</td>
<td>10.206</td>
</tr>
<tr>
<td>Distillate Fuel Oil No. 4</td>
<td>0.146</td>
<td>75.04</td>
<td>10.956</td>
</tr>
<tr>
<td>Distillate Fuel Oil No. 5</td>
<td>0.140</td>
<td>72.93</td>
<td>10.210</td>
</tr>
<tr>
<td>Residual Fuel Oil No. 6</td>
<td>0.150</td>
<td>75.10</td>
<td>11.265</td>
</tr>
<tr>
<td>Used Oil</td>
<td>0.135</td>
<td>74.00</td>
<td>9.990</td>
</tr>
<tr>
<td>Kerosene</td>
<td>0.135</td>
<td>75.20</td>
<td>10.152</td>
</tr>
<tr>
<td>Liquefied petroleum gases (LPG)</td>
<td>0.092</td>
<td>62.98</td>
<td>5.794</td>
</tr>
<tr>
<td>Propane</td>
<td>0.091</td>
<td>61.46</td>
<td>5.593</td>
</tr>
<tr>
<td>Propylene</td>
<td>0.091</td>
<td>65.95</td>
<td>6.001</td>
</tr>
<tr>
<td>Ethane</td>
<td>0.069</td>
<td>62.64</td>
<td>4.322</td>
</tr>
<tr>
<td>Ethanol</td>
<td>0.084</td>
<td>68.44</td>
<td>5.749</td>
</tr>
<tr>
<td>Ethylene</td>
<td>0.100</td>
<td>67.43</td>
<td>6.743</td>
</tr>
<tr>
<td>Isobutane</td>
<td>0.097</td>
<td>64.91</td>
<td>6.296</td>
</tr>
<tr>
<td>Isobutylene</td>
<td>0.103</td>
<td>67.74</td>
<td>6.977</td>
</tr>
<tr>
<td>Butane</td>
<td>0.101</td>
<td>65.15</td>
<td>6.580</td>
</tr>
<tr>
<td>Butylene</td>
<td>0.103</td>
<td>67.73</td>
<td>6.976</td>
</tr>
<tr>
<td>Naphtha (<401 deg F)</td>
<td>0.125</td>
<td>68.02</td>
<td>8.503</td>
</tr>
<tr>
<td>Natural Gasoline</td>
<td>0.110</td>
<td>66.83</td>
<td>7.351</td>
</tr>
<tr>
<td>Other Oil (>401 deg F)</td>
<td>0.139</td>
<td>76.22</td>
<td>10.595</td>
</tr>
<tr>
<td>Pentanes Plus</td>
<td>0.110</td>
<td>70.02</td>
<td>7.702</td>
</tr>
<tr>
<td>Petrochemical Feedstocks</td>
<td>0.129</td>
<td>70.97</td>
<td>9.155</td>
</tr>
<tr>
<td>Petroleum Coke</td>
<td>0.143</td>
<td>102.41</td>
<td>14.645</td>
</tr>
<tr>
<td>Fuel Type</td>
<td>MMBtu / short ton</td>
<td>kg CO₂ / mmMMBtu</td>
<td>kg CO₂ / short ton</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Special Naphtha</td>
<td>0.125</td>
<td>72.34</td>
<td>9.043</td>
</tr>
<tr>
<td>Unfinished Oils</td>
<td>0.139</td>
<td>74.49</td>
<td>10.354</td>
</tr>
<tr>
<td>Heavy Gas Oils</td>
<td>0.148</td>
<td>74.92</td>
<td>11.088</td>
</tr>
<tr>
<td>Lubricants</td>
<td>0.144</td>
<td>74.27</td>
<td>10.695</td>
</tr>
<tr>
<td>Motor Gasoline</td>
<td>0.125</td>
<td>70.22</td>
<td>8.778</td>
</tr>
<tr>
<td>Aviation Gasoline</td>
<td>0.120</td>
<td>69.25</td>
<td>8.310</td>
</tr>
<tr>
<td>Kerosene-Type Jet Fuel</td>
<td>0.135</td>
<td>72.22</td>
<td>9.750</td>
</tr>
<tr>
<td>Asphalt and Road Oil</td>
<td>0.158</td>
<td>75.36</td>
<td>11.907</td>
</tr>
<tr>
<td>Crude Oil</td>
<td>0.138</td>
<td>74.49</td>
<td>10.280</td>
</tr>
<tr>
<td>Other fuels (solid)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Municipal Solid Waste</td>
<td>9.95</td>
<td>90.7</td>
<td>902.465</td>
</tr>
<tr>
<td>Tires</td>
<td>26.87</td>
<td>85.97</td>
<td>2310.014</td>
</tr>
<tr>
<td>Plastics</td>
<td>38.00</td>
<td>75.00</td>
<td>2850.000</td>
</tr>
<tr>
<td>Petroleum Coke</td>
<td>30.00</td>
<td>102.41</td>
<td>3072.300</td>
</tr>
<tr>
<td>Other fuels (Gaseous)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blast Furnace Gas</td>
<td>0.092 x 10⁻³</td>
<td>274.32</td>
<td>0.025</td>
</tr>
<tr>
<td>Coke Oven Gas</td>
<td>0.599 x 10⁻³</td>
<td>46.85</td>
<td>0.028</td>
</tr>
<tr>
<td>Propane Gas</td>
<td>2.516 x 10⁻³</td>
<td>61.46</td>
<td>0.155</td>
</tr>
<tr>
<td>Fuel Gas²</td>
<td>1.388 x 10⁻³</td>
<td>59.00</td>
<td>0.082</td>
</tr>
<tr>
<td>Biomass Fuels – (Ssolid)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood and Wood Residuals</td>
<td>15.38</td>
<td>93.80</td>
<td>1442.644</td>
</tr>
<tr>
<td>Agricultural Byproducts</td>
<td>8.25</td>
<td>118.17</td>
<td>974.903</td>
</tr>
<tr>
<td>Peat</td>
<td>8.00</td>
<td>111.84</td>
<td>894.720</td>
</tr>
<tr>
<td>Solid Byproducts</td>
<td>25.83</td>
<td>105.51</td>
<td>2725.323</td>
</tr>
<tr>
<td>Biomass Fuels – (Ggaseous)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biogas (Captured methane)</td>
<td>0.841 x 10⁻³</td>
<td>52.07</td>
<td>0.044</td>
</tr>
<tr>
<td>Biomass Fuels – (Lliquid)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td>0.084</td>
<td>68.44</td>
<td>5.749</td>
</tr>
<tr>
<td>Biodiesel</td>
<td>0.128</td>
<td>73.84</td>
<td>9.452</td>
</tr>
<tr>
<td>Rendered Animal Fat</td>
<td>0.125</td>
<td>71.06</td>
<td>8.883</td>
</tr>
<tr>
<td>Vegetable Oil</td>
<td>0.120</td>
<td>81.55</td>
<td>9.786</td>
</tr>
</tbody>
</table>

Table A.2 Emissions & Generation Resource Integrated Database (eGRID) Table

<table>
<thead>
<tr>
<th>eGRID eSubregion Acronym</th>
<th>eGRID eSubregion nName</th>
<th>Annual Output eEmission Rates (lb CO2/MWh)</th>
<th>(metric ton CO2/MWh)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKGD</td>
<td>ASCC Alaska Grid</td>
<td>1,280.86</td>
<td>0.6330.581</td>
</tr>
<tr>
<td>AKMS</td>
<td>ASCC Miscellaneous</td>
<td>521.26</td>
<td>0.2570.236</td>
</tr>
<tr>
<td>AZNM</td>
<td>WECC Southwest</td>
<td>1,191.35</td>
<td>0.5880.540</td>
</tr>
<tr>
<td>CAMX</td>
<td>WECC California</td>
<td>658.68</td>
<td>0.3250.299</td>
</tr>
<tr>
<td>ERCT</td>
<td>ERCOT All</td>
<td>1,181.73</td>
<td>0.5840.536</td>
</tr>
<tr>
<td>FRCC</td>
<td>FRCC All</td>
<td>1,176.61</td>
<td>0.5840.534</td>
</tr>
<tr>
<td>HIMS</td>
<td>HICC Miscellaneous</td>
<td>1,351.66</td>
<td>0.6690.613</td>
</tr>
<tr>
<td>HIOA</td>
<td>HICC Oahu</td>
<td>1,593.35</td>
<td>0.7870.723</td>
</tr>
<tr>
<td>MORE</td>
<td>MRO East</td>
<td>1,591.65</td>
<td>0.7860.722</td>
</tr>
<tr>
<td>MROW</td>
<td>MRO West</td>
<td>1,628.60</td>
<td>0.8040.739</td>
</tr>
<tr>
<td>NEWE</td>
<td>NPCC New England</td>
<td>728.41</td>
<td>0.3690.330</td>
</tr>
<tr>
<td>NWPP</td>
<td>WECC Northwest</td>
<td>819.21</td>
<td>0.4050.372</td>
</tr>
<tr>
<td>NYCW</td>
<td>NPCC NYC/Westchester</td>
<td>610.67</td>
<td>0.3020.277</td>
</tr>
<tr>
<td>NYLI</td>
<td>NPCC Long Island</td>
<td>1,347.99</td>
<td>0.6660.611</td>
</tr>
<tr>
<td>NYUP</td>
<td>NPCC Upstate NY</td>
<td>497.92</td>
<td>0.2460.226</td>
</tr>
<tr>
<td>RFCE</td>
<td>RFC East</td>
<td>947.42</td>
<td>0.4680.430</td>
</tr>
<tr>
<td>RFCM</td>
<td>RFC Michigan</td>
<td>1,659.46</td>
<td>0.8290.753</td>
</tr>
<tr>
<td>RFCW</td>
<td>RFC West</td>
<td>1,520.59</td>
<td>0.7540.690</td>
</tr>
<tr>
<td>RMPA</td>
<td>WECC Rockies</td>
<td>1,824.51</td>
<td>0.9040.828</td>
</tr>
<tr>
<td>SPNO</td>
<td>SPP North</td>
<td>1,815.76</td>
<td>0.8970.824</td>
</tr>
<tr>
<td>SPSO</td>
<td>SPP South</td>
<td>1,599.02</td>
<td>0.7990.725</td>
</tr>
<tr>
<td>SRMV</td>
<td>SERC Mississippi Valley</td>
<td>1,002.41</td>
<td>0.4950.455</td>
</tr>
<tr>
<td>SRMW</td>
<td>SERC Midwest</td>
<td>1,749.75</td>
<td>0.8640.794</td>
</tr>
<tr>
<td>SRSO</td>
<td>SERC South</td>
<td>1,325.68</td>
<td>0.6650.601</td>
</tr>
<tr>
<td>SRTV</td>
<td>SERC Tennessee Valley</td>
<td>1,357.71</td>
<td>0.6740.616</td>
</tr>
<tr>
<td>SRVC</td>
<td>SERC Virginia/Carolina</td>
<td>1,035.87</td>
<td>0.5420.470</td>
</tr>
<tr>
<td>U.S.</td>
<td></td>
<td>1,216.18</td>
<td>0.6040.552</td>
</tr>
</tbody>
</table>

Source: U.S. EPA eGRID2012, Version 1.0 Year 2009 GHG Annual Output Emission Rates (Created April 2012)

http://www.epa.gov/cleanenergy/documents/egridzips/eGRID2012V1_0_year09_SummaryTables.pdf.

*Converted from lbs CO2/MWh to metric tons CO2/MWh using conversion factor 1 metric ton = 2,204.62 lbs.
Appendix B. Device Destruction Efficiencies – Quantification Methodology

Table B.1 Default Methane Destruction Efficiencies by Destruction Device

<table>
<thead>
<tr>
<th>Biogas Destruction Device</th>
<th>Biogas-Destruction Efficiency (BDE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Flare</td>
<td>0.960</td>
</tr>
<tr>
<td>Enclosed Flare</td>
<td>0.995</td>
</tr>
<tr>
<td>Lean-burn Internal Combustion Engine</td>
<td>0.936</td>
</tr>
<tr>
<td>Rich-burn Internal Combustion Engine</td>
<td>0.995</td>
</tr>
<tr>
<td>Boiler</td>
<td>0.980</td>
</tr>
<tr>
<td>Microturbine or large gas turbine</td>
<td>0.995</td>
</tr>
<tr>
<td>Upgrade and use of gas as CNG/LNG fuel</td>
<td>0.950</td>
</tr>
<tr>
<td>Upgrade and injection into natural gas</td>
<td>0.981</td>
</tr>
<tr>
<td>transmission and distribution pipeline</td>
<td></td>
</tr>
</tbody>
</table>

Equation B.1: Calculating Heat Generation Emission Factor

\[CEF_{heat} = \frac{CEF_{CO2,i}}{Eff_{heat}} \times \frac{44}{12} \]

Where,

- \(CEF_{heat} \) = CO₂ emission factor for heat generation
- \(CEF_{CO2,i} \) = CO₂ emission factor of fuel used in heat generation (see table B.1)
- \(Eff_{heat} \) = Boiler efficiency of the heat generation (either measured efficiency, manufacturer nameplate data for efficiency, or 100%)
- \(\frac{44}{12} \) = Carbon to carbon dioxide conversion factor
Appendix C. Data Substitution Methodology – Quantification Methodology

(a) ARB expects that MMC projects will have continuous, uninterrupted data for the entire reporting period. However, ARB recognizes that unexpected events or occurrences may result in brief data gaps.

(b) This appendix provides a quantification methodology to be applied to the calculation of GHG emission reductions for MMC projects when data integrity has been compromised due to missing data points.

(c) This methodology is only applicable to gas flow metering and methane concentration parameters. Data substitution is not allowed for equipment that monitors the proper functioning of destruction devices such as thermocouples.

(d) This methodology may be used for missing temperature and pressure data used to adjust flow rates to standard conditions.

(d)(e) The following data substitution methodology may be used only for flow and methane concentration data gaps that are discrete, limited, non-chronic, and due to unforeseen circumstances.

(e)(f) Data substitution is not allowed for data used to calculate mine specific hyperbolic emission rate decline curve coefficients for an abandoned underground mine methane recovery activity.

(f)(g) Data substitution can only be applied to methane concentration or flow readings, but not both simultaneously. If data is missing for both parameters, no reductions can be credited.

(g)(h) Substitution may only occur when two other monitored parameters corroborate proper functioning of the destruction device and system operation within normal ranges. These two parameters must be demonstrated as follows:

(1) Proper functioning can be evidenced by thermocouple readings for flares or engines, energy output for engines, etc.

(2) For methane concentration substitution, flow rates during the data gap must be consistent with normal operation.

(3) For flow substitution, methane concentration rates during the data gap must be consistent with normal operations.
(h)(i) If corroborating parameters fail to demonstrate any of these requirements, no substitution may be employed. If the requirements above can be met, the following substitution methodology may be applied:

<table>
<thead>
<tr>
<th>Duration of Missing Data</th>
<th>Substitution Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than six hours</td>
<td>Use the average of the four hours of normal operation immediately before and following the outage</td>
</tr>
<tr>
<td>Six to 24 hours</td>
<td>Use the 90% lower confidence limit of the 24 hours of normal operation prior to and after the outage</td>
</tr>
<tr>
<td>One to seven days</td>
<td>Use the 95% lower confidence limit of the 72 hours of normal operation prior to and after the outage</td>
</tr>
<tr>
<td>Greater than one week</td>
<td>No data may be substituted and no credits may be generated</td>
</tr>
</tbody>
</table>