Presentation Overview

- Meeting Purpose/Public Review Period
- Background
- Methodology for Preparing the Draft Assessments
- Results of the Draft Assessments
- Actions to Reduce Health Risk
- Next Steps
Meeting Purpose
Public Review Period
Purpose and Public Review

Purpose of today’s meeting:
- Present our draft analyses and explain results
- Discuss progress being made
- Answer your questions
- Initiate process for review and comment

After today’s meeting, there will be:
- Opportunity for comments, both in writing and at second community meeting within 45 days
- Consultation to obtain your ideas on possible future emission reduction actions
Health Risk Assessment Timelines

<table>
<thead>
<tr>
<th>Railyard</th>
<th>Company</th>
<th>Railyard</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draft Health Risk Assessments to be Completed by Spring 2007</td>
<td>Draft Health Risk Assessments to be Completed by the end of 2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commerce/Eastern</td>
<td>BNSF</td>
<td>Barstow</td>
<td>BNSF</td>
</tr>
<tr>
<td>Hobart</td>
<td>BNSF</td>
<td>San Bernardino</td>
<td>BNSF</td>
</tr>
<tr>
<td>Richmond</td>
<td>BNSF</td>
<td>San Diego</td>
<td>BNSF</td>
</tr>
<tr>
<td>Stockton</td>
<td>BNSF</td>
<td>Colton</td>
<td>UP</td>
</tr>
<tr>
<td>Wilmington (Watson)</td>
<td>BNSF</td>
<td>Dolores (ICTF)</td>
<td>UP</td>
</tr>
<tr>
<td>Commerce</td>
<td>UP</td>
<td>Industry</td>
<td>UP</td>
</tr>
<tr>
<td>LATC (Los Angeles)</td>
<td>UP</td>
<td>Oakland</td>
<td>UP</td>
</tr>
<tr>
<td>Mira Loma</td>
<td>UP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stockton</td>
<td>UP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BACKGROUND
Background

- This effort is part of our commitment to address pollution impacts on communities
 - Implements the ARB Goods Movement Plan
 - Required by the ARB/UP/BNSF Railroad Agreement

- The State’s goals are to:
 - Reduce exposure to diesel PM as quickly as possible
 - Reduce risks by at least 85 percent by 2020
 - Obtain the emission reductions needed to attain air quality standards
Purpose of the Assessments

- Identify pollution sources in the railyards
- Determine exposures to the public
- Estimate the health risks
- Put the railyard risks into perspective with other sources
- Provide information needed to reduce the risk
Scope of the Draft Assessments

- Two major parts:
 - Health risk assessment for the railyard
 - Health risk assessment for significant diesel sources surrounding the community

- Separate report for each railyard

- Combined report for the four Commerce railyards

- Focus on diesel PM; other toxic sources evaluated, but small relative to diesel PM
Methodology for Preparing the Draft Assessments
Railyard Risk Assessment Methodology

- Prepare the best possible emissions inventory
- Complete air dispersion modeling
- Provide estimates of health risks
- Determine other sources of risks
Prepare Railyard Emissions Inventory

Diesel PM Emission Inventory

- Locomotives (line-hauls, switchers, & services)
- On-road trucks & vehicles
- Cargo handling equipment
- Off-road equipment
- Stationary Sources (point & area)
Estimating Emissions

- Fleet/Equipment population
- Operational activity
 - Hours of operation
 - Load factor
 - Vehicle miles traveled (VMT)
 - Hours per day
- Emission factors
- Fuel characteristics
 - Fuel usage
 - Sulfur content
Example - Locomotive Emissions

- Number of locomotives by class
- Time operating at each notch setting and in idle mode
- Emission factors by locomotive type and mode (notch setting/idling)
- Hours of operation in each mode
- Types and amount of fuel used
Summary of BNSF Watson Railyard Diesel PM Emissions (2005)

<table>
<thead>
<tr>
<th>Source Types</th>
<th>Diesel PM Emissions</th>
<th>Tons per year</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locomotive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Line Haul Locomotives</td>
<td></td>
<td>1.39</td>
<td>72%</td>
</tr>
<tr>
<td>- Switch Locomotives</td>
<td></td>
<td>0.43</td>
<td>22%</td>
</tr>
<tr>
<td>- Basic Service (Refueling by Trucks)</td>
<td></td>
<td>0.06</td>
<td>3%</td>
</tr>
<tr>
<td>Off-Road Equipment</td>
<td></td>
<td>0.05</td>
<td>3%</td>
</tr>
<tr>
<td>On-Road Vehicles</td>
<td></td>
<td>< 0.01</td>
<td>< 1%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1.92</td>
<td>100%</td>
</tr>
</tbody>
</table>
Prepare Non-Railyard Emission Inventories

- Focus on diesel PM sources
- Identify the population of trucks on roads
- Apply specific emission factors to the trucks
- Calculate emissions
Summary of Nearby Non-Railyard Diesel PM Emission Inventory

<table>
<thead>
<tr>
<th>Sources</th>
<th>Tons per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile Sources</td>
<td>3.20</td>
</tr>
<tr>
<td>Stationary Sources</td>
<td>1.35</td>
</tr>
<tr>
<td>TOTAL</td>
<td>4.55</td>
</tr>
</tbody>
</table>
Comparison of Local Diesel PM Sources with Regional Sources (tons per year in 2005)

Port of Los Angeles & Port of Long Beach: 1,800 tons per year

Watson Railyard: 1.9 tons per year

Basin Total: 7,800 tons per year

Other Sources: 77%

0.02%
Complete Air Dispersion Modeling

- Use air quality modeling to estimate the amount of diesel PM in the air surrounding a source
- Express results as a “concentration” in units of micrograms per cubic meter of air
- Use U.S. EPA-approved computer models
- Major inputs to the model:
 - Emissions inventory
 - Meteorological data (wind speed/direction, temperature, etc.)
Estimate Health Risks

- Combine air dispersion modeling results with toxicity data to estimate health risks.
- Determine risks for cancer and non-cancer effects.
- Express results as chances per million for cancer and a “hazard index” for non-cancer impacts.
- Use toxicity data provided by the California Office of Environmental Health Hazard Assessment.
- No significant impacts on the communities identified for non-cancer effects.
Results of the Draft Assessments
Results – BNSF Watson Railyard

Estimated Average Cancer Risk (Chances in a Million)

- >100*
- 51-100*
- 26-50*
- 10-25*

Estimated Exposed Population Per Cancer Risk Range (Non Cumulative)

- 1,000
- 3,200
- 5,000
- 12,600

* Cancer Risk Range (Chances in a Million)
Results

Location of Potential Cancer Risks

BNSF Watson Railyard
Results

Location of Potential Cancer Risks

Non-Railyard Sources
Actions to Reduce Health Risk
Approach to Reducing Emissions

- ARB regulations
 - Fuels
 - Cargo handling equipment
 - Transport refrigeration units
 - Heavy-duty diesel on-road trucks and off-road vehicles
- U.S. EPA regulation
 - Locomotives
- Voluntary agreements
 - 1998 South Coast/2005 Statewide
- Railroad yard locomotive replacement program
- Funding programs
 - Carl Moyer Incentives
Benefits of California Railyard Diesel PM Emission Reduction Measures

- **2005-2007:**
 - CARB diesel fuel for intrastate locomotives
 - 2005 railyard agreement

- **2005-2010:**
 - Measures above plus:
 - 1998 NOx locomotive fleet average agreement (South Coast)
 - ARB cargo handling equipment regulation
 - ARB on-road heavy-duty truck regulation
 - ARB transport refrigeration unit regulation

Approximately 15-20% and 40-50% reductions.
Progress Report - Existing Measures

Diesel Fuel Standards

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Maximum Sulfur Level (ppmw)</th>
<th>Aromatics Maximum (% by volume)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prior</td>
<td>2006-2007</td>
</tr>
<tr>
<td>CARB Diesel</td>
<td>500</td>
<td>15</td>
</tr>
<tr>
<td>EPA On-Road Diesel</td>
<td>500</td>
<td>15</td>
</tr>
<tr>
<td>EPA Non-road Diesel</td>
<td>5,000</td>
<td>500*</td>
</tr>
</tbody>
</table>

* Lower to 15 ppmw in 2012.
Progress Report - Existing Measures
Average Diesel Fuel Sulfur Levels
Consumed by Locomotives in California

![Graph showing average diesel fuel sulfur levels in ppmw from 2005 to 2012. The graph indicates a significant decrease in sulfur content.](image-url)
Progress Report - Existing Measures
South Coast Railyard Diesel PM Emission Reductions: Line-Haul Locomotives

* Based on 7 South Coast railyards line-haul locomotives emissions
Progress Report - Existing Measures
South Coast Railyard Diesel PM Emission Reductions: Cargo Handling Equipment

* Based on 7 South Coast railyards cargo handling equipment emissions
Progress Report – Existing Measures
South Coast Railyard Diesel PM Emission Reductions: New On-Road Trucks

* Based on 7 South Coast railyards on-road truck emissions
Possible Additional Measures

- 2005-2020:
 - U.S. EPA locomotive rulemaking
 - California replacement of switch locomotives
 - ARB in-use truck measure

≈60-80%
Progress Report – Potential Measures
South Coast Railyard Diesel PM Emission Reductions:
Switcher Locomotive Replacement by 2010

* Based on 7 South Coast railyards switcher locomotives emissions
Progress Report - Potential Measures
South Coast Railyard Diesel PM Emission Reductions: In Use On-Road Trucks

- Based on 7 South Coast railyards on-road truck emissions

- In addition to the existing on-road heavy-duty truck regulation.
Progress Report - Potential Measure
South Coast Railyard Diesel PM Emission Reductions: U.S. EPA Locomotive Rulemaking

* Based on 7 South Coast railyards line-haul locomotives emissions

- In addition to the existing Line-haul locomotive fleet average agreement.
Progress Report - Existing + Potential Measures
Total Benefits of the Emission Reductions Measures for the South Coast Railyards

* Based on 7 South Coast railyards diesel PM emissions
Next Steps
Next Steps

- Begin public comment period
- Review the draft assessments
- Submit written comments to ARB
- Hold next series of community meetings
- Meet with interested stakeholders
- Evaluate any additional feasible mitigation measures
ARB Railyard Contacts

- **Manager**
 - Harold Holmes, Engineering Evaluation Section
 (916) 324-8029; hholmes@arb.ca.gov

- **Lead Staff**
 - Jing Yuan, Ph.D.
 (916) 322-8875; jyuan@arb.ca.gov
 - Eugene Yang, Ph.D., P.E.
 (916) 327-1510; eyang@arb.ca.gov

- **ARB Railyard HRA Website:**
 - http://www.arb.ca.gov/railyard/hra/hra.htm