Diesel Engine Major Monitors

- Fuel System
- Misfire
- EGR System
- Boost Pressure Control System

Fuel System Monitoring

- Original Proposal: Require following faults to be detected before emissions exceed 1.5x standards:
 - fuel pressure
 - fuel injection quantity
 - multiple fuel injection performance
 - fuel injection timing
- Was required starting in the 2007 model year

Fuel System Monitoring (cont'd)

Current Proposal:

- Require a functional check of the closed-loop fuel system: detect a malfunction when the system has reached its control limits such that it cannot achieve the target fuel pressure
- Electronic components monitored under comprehensive component requirements
- Implementation:
 - Required for the 2007 model year
 - Original proposal still required for 2010

Fuel System Monitoring Approach

- 2007 Requirement
 - Compare target and actual pressure using pressure sensor
- 2010 Requirement
 - Fuel Pressure
 - Compare target and actual pressure using pressure sensor
 - Fuel Injection Quantity, Multiple Injection
 Performance, and Fuel Injection Timing
 - Measure crankshaft speed fluctuations using crankshaft speed sensor

Misfire Monitoring

- Original Proposal:
 - Must detect misfire occurring continuously in one or more cylinders during idle
 - Required for the 2007 model year
- Current Proposal:
 - Unchanged
- Misfire Monitoring Approach
 - Measure crankshaft speed fluctuation with crankshaft speed sensor

EGR System Monitoring

- Original Proposal: Require following faults to be detected before emissions exceed 1.5x standards:
 - EGR Flow Rate
 - EGR Response Rate
 - EGR Cooling System
- Electronic components monitored under comprehensive component requirements
- Was required starting in the 2007 model year

EGR System Monitoring (cont'd)

- Current Proposal:
 - Require a functional check of the EGR system: detect a malfunction when the system has reached its control limits such that it cannot achieve the target EGR flow
 - Require a functional check of the EGR cooling system for proper cooling
 - Electronic components monitored under comprehensive component requirements

EGR System Monitoring (cont'd)

- Implementation
 - Required for the 2007 model year
 - Original proposal still required in 2010

EGR System Monitoring Approach

- 2007 Requirement
 - Compare target and actual flowrate and/or valve position using MAF sensor and/or valve position sensor
 - EGR Cooling System
 - Monitor cooling effectiveness using EGR temperature sensors or IMT sensors

EGR System Monitoring Approach (cont'd)

- 2010 Requirement
 - EGR Flowrate
 - Compare target and actual flowrate and/or valve position using MAF sensor and/or valve position sensor
 - Response Rate
 - Measure time to achieve desired flowrate using same sensors
 - EGR Cooling System
 - Monitor cooling effectiveness using EGR temperature sensors or IMT sensors

Boost Pressure Control Monitoring

- Original Proposal: Require following faults to be detected before emissions exceed 1.5x standards:
 - Under and over boost malfunctions
 - Slow response (VGT systems only)
 - Charge air under cooling
 - Electronic components monitored under comprehensive component requirements
- Was required starting in Alr Resources BOARD

Boost Pressure Control Monitoring (cont'd)

- Current Proposal:
 - Require a functional check of the boost pressure control system: detect a malfunction when the system has reached its control limits such that it cannot achieve the target boost pressure
 - Electronic components monitored under comprehensive component requirements
- Required for the 2007 model year
- Original proposal still required in 2010

Boost Pressure Control Monitoring Approach

- 2007 Requirement
 - Compare target and actual boost pressure using boost pressure sensor
- 2010 Requirement
 - Under and over boost malfunctions
 - Compare target and actual boost pressure using boost pressure sensor
 - Slow response (VGT systems only)
 - Charge air under cooling
 - Monitor cooling effectiveness using IMT sensors

Diesel Engine Aftertreatment Monitors

- Oxidation Catalyst
- Lean NOx Catalyst
- SCR Catalyst
- NOx Trap
- PM Trap

Oxidation Catalyst Monitoring

- Original Proposal: Require following faults to be detected before emissions exceed 1.75 x standards:
 - NMHC conversion
 - PM conversion
- Was required starting in the 2007 model year

Oxidation Catalyst Monitoring (cont'd)

- Current Proposal: Require a functional check of the oxidation catalyst system: signal a malfunction when no detectable amount of NMHC or PM conversion capability occurs
- Required for the 2007 model year
- Original proposal still required in 2010

Oxidation Catalyst Monitoring Approach

- 2007 Requirement
 - Exhaust Temperature sensor
- 2010 Requirement
 - Oxygen or A/F sensor

Lean NOx Catalyst Monitoring

- Original Proposal: Require following faults to be detected before emissions exceed 1.75 x standards:
 - NOx conversion
- Was required starting in the 2007 model year

Lean NOx Catalyst Monitoring (cont'd)

Current Proposal:

- Require a functional check of the lean NOx catalyst system: signal a malfunction when no detectable amount of NOx conversion capability occurs
- Reductant injection monitoring
 - Confirm actual reductant
 - Monitor reductant level (empty tank) if separate tank is used
 - Confirm injection of desired quantity is achieved (closed-loop system only)

Lean NOx Catalyst Monitoring (cont'd)

- Implementation
 - Required for the 2007 model year
 - Original proposal still required in 2010

Lean NOx Catalyst Monitoring Approach

- 2007 Requirement
 - Functional check of lean NOx catalyst system
 - NOx sensor(s) or exhaust temperature sensor
 - Reductant injection monitoring
 - Confirm actual reductant with a temperature sensor or NOx sensor
 - Reductant level sensor
 - Control limits of reductant injection system are reached
- 2010 Requirement
 - Lean NOx catalyst performance calibrated to 1.75
 x standards
 - NOx sensor

California Environmental Protection Agency

Reductant injection monitoring

AIR RESOURCES BOARD

SCR Catalyst Monitoring

- Original Proposal: Require following faults to be detected before emissions exceed 1.75 x standards:
 - NOx conversion
- Was required starting in the 2007 model year

SCR Catalyst Monitoring (cont'd)

Current Proposal:

- Require a functional check of the SCR catalyst system: signal a malfunction when no detectable amount of NOx conversion capability occurs
- Reductant injection monitoring
 - Confirm actual reductant
 - Monitor reductant level (empty tank) if separate tank is used
 - Confirm injection of desired quantity is achieved (closed-loop system only)
- Required for the 2007 model year
- Original proposal still required in 2010

SCR Catalyst Monitoring Approach

- 2007 Requirement
 - Functional check of SCR catalyst system
 - NOx sensor/s or exhaust temperature sensor
 - Reductant injection monitoring
 - Confirm actual reductant with a temperature sensor or NOx sensor
 - Reductant level sensor
 - Control limits of reductant injection system are reached
- 2010 Requirement
 - SCR catalyst performance calibrated to 1.75 x standards
 - NOx sensors

California Environmental Protection Agency

AIR RESOURCES BOARD

NOx Trap System Monitoring

- Original Proposal: Require following faults to be detected before emissions exceed 1.5 x standards:
 - NOx trapping/adsorption
- Discern temporary loss of performance due to sulfur poisoning
- Was required starting in the 2007 model year

NOx Trap System Monitoring (cont'd)

- Current Proposal:
 - Require a functional check of the NOx trap system: detect a malfunction when no detectable amount of NOx trapping occurs
 - Discern temporary loss of performance due to sulfur poisoning from real malfunctions
- Required for the 2007 model year
- Original proposal still required in 2010

NOx Trap System Monitoring Approach

- 2007 Requirement
 - Functional check of the NOx trap
 - NOx sensors or A/F sensors
- 2010 Requirement
 - NOx trap performance calibrated to 1.5 x standards
 - NOx sensors or A/F sensors

PM Trap Monitoring

- Original Proposal: Require following faults to be detected before emissions exceed 1.5 x standards:
 - Trapping Performance
 - Regeneration
- Was required starting in the 2007 model year

PM Trap Monitoring (cont'd)

- Current Proposal: Require a functional check of the PM trap system: signal a malfunction when no detectable amount of PM trapping or regeneration occurs
- Required for the 2007 model year
- Original proposal still required in 2010

PM Trap Monitoring Approach

- 2007 Requirement
 - Functional check of the PM trap system
 - Pressure sensors and/or temperature sensors to confirm trapping and regeneration
- 2010 Requirement
 - Trapping performance calibrated to 1.5 x standards
 - Pressure sensors
 - Regeneration performance calibrated to 1.5 x standards
 - Pressure sensors and/or temperature sensors

Cooling System Monitoring

- Required to monitor cooling system (e.g., thermostat, ECT sensor) for proper performance:
 - must reach minimum temperature necessary to enable other OBD monitors or any emission control strategy within a reasonable time
 - must reach near thermostat-regulating temperature within a reasonable time

Cooling System Monitoring (cont.)

- Will likely require engine manufacturers to have upper and lower bounds on cooling system-build specs provided to coach builders
- May require engine manufacturers to set upper and lower bounds on amount of heat that coach builders may take out of system during warm-up

Comprehensive Component Monitoring

- Required to monitor electronic powertrain components that:
 - can cause a measurable emissions increase during any reasonable driving conditions, OR
 - are used for other OBD monitors
- Required to monitor input components for circuit and rationality faults
- Required to monitor output components for functional faults
- Monitors not tied to emission thresholds

Comprehensive Component Monitoring (cont.)

 Engine manufacturer, transmission manufacturer, and other powertrain system suppliers (e.g., hybrid powertrain supplier) will each need to monitor all components it uses/commands (e.g., electronic components)