Goals

• Continue progress toward ozone attainment

• Reduce localized exposure
 ▪ PM, toxics

• Reduce GHG emissions
 ▪ 80% by 2050
Coordinated Advanced Vehicle Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Timeframe</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criteria pollutants: HC, NOx, PM</td>
<td>2014-2022</td>
<td>Cleanest vehicles by attainment date</td>
</tr>
<tr>
<td>Greenhouse gas: CO₂, CH₄, N₂O, HFC, BC</td>
<td>2017-2025</td>
<td>50+% reduction from baseline</td>
</tr>
<tr>
<td>ZEV: Ultra-low carbon emissions and fuels</td>
<td>2018-2025</td>
<td>Commercialize ZEVs for increased market share 2025 on</td>
</tr>
<tr>
<td>Clean fuels outlet</td>
<td>~2015+</td>
<td>Establish fueling infrastructure until market established</td>
</tr>
</tbody>
</table>
Advantages of this Approach

• One program to address environmental problems
• Builds on past successful pioneering CA programs
• Continues progress towards goals
• Sets clear targets for 2025
• Lays foundation for next generation of clean vehicles
• Consistent with pathways that achieve 2050 GHG goal
 ▪ Need to start now to meet goal
One Pathway to 2050
On-Road Passenger Vehicles

- FCVs
- BEVs
- PHEVs
- HEVs
- All ICEs (SI, CI, FFV)

FCV + BEV (ZEVs)
120,000 (2020) 1,400,000 (2025)

79%
More Advantages of this Approach

• Performance based standards
 ▪ Maintain consumer choice
 ▪ Build on existing and emerging technologies
 • e.g. HEVs, light weight materials and designs

• Fuel savings typically offset costs

• Energy security from moving away from petroleum
 ▪ Supports initial fueling infrastructure

• Adaptable to nationwide program