California Renewable Diesel Multimedia Evaluation
Tier I Report

December 8, 2010
Biodiesel Workshop

Tom McKone, University of California, Berkeley
Tim Ginn, University of California, Davis
Dave Rice, Consultant to University of California
Renewable Diesel Tier I Elements

- Background
- Study Approach—Life Cycle and Multimedia
- Release Scenarios
- Renewable Diesel Production, Storage, Distribution and Use
- Renewable Diesel Toxicity
- Transport and Fate
- Tier I Conclusions

December 8, 2009
Background

• Currently the majority of biological-source diesel fuels are fatty-acid methyl esters (FAME)
• Renewable diesel is different and now entering the market
• According to the Low-Carbon Fuel Standard (LCFS)

“... a motor vehicle fuel or fuel additive which is all the following:

(A) Registered as a motor vehicle fuel or fuel additive under 40 CFR part 79; A-9
(B) Not a mono-alkyl ester;
(C) Intended for use in engines that are designed to run on conventional diesel fuel; and
(D) Derived from nonpetroleum renewable resources.”
Biofuels Options

Fats and Oils
- Renewable Diesel
- Cracking
- Biodiesel (Fatty Acid methyl Ester or FAME)

Starches and Sugars
- Ethanol
- Higher Alcohols
- Sugar to Hydrocarbon

Biomass
- Cellulosic Ethanol
- Digestion
- Pyrolysis
- Hydrothermal
- Biomass to liquid (BTL)
Study Approach

• Life-cycle approach to impacts
 - Human health
 - Ecological risk
 - Resource stress and damage

• Identify key uncertainties and data gaps

• Address multimedia impacts
 - Air quality
 - Water resources
 - Soil
 - Infrastructure

• Excludes indirect environmental, ecological, and health impacts from biomass production (i.e. climate disruption)
Life-Cycle Stages

Demands

- Energy
 - Feedstock production, extraction
 - Transport
 - Fuel Production
 - Transport

- Resources

Impacts

- Air Emissions
- Water Emissions
- Wastes (contained)

Without containment

Environment, human health, resources (water)
Key LCA Studies Review

- **US EPA Life Cycle Assessment of Renewable Fuels**
 - As part of its RFS2 rulemaking, EPA made a life cycle assessment of alternative and petroleum transportation fuels
 - EPA reported fuel use and production emissions

 - Life-cycle damage per vehicle-mile traveled (VMT)
 - Different combinations of fuels and vehicle technologies
 - VMT damages were remarkably similar
 - NRC urged caution interpreting small differences between fuel/vehicle combinations
Release Scenarios

• Normal releases
 - Production emissions (in addition to refinery operation)
 - Hexane or CO₂ released to the air during seed extraction,
 - Odors associated with waste biomass
 - Used process water discharges (pH and trace-chemicals)
 - Use-phase (combustion) emissions
 - Tailpipe emissions
 - Marine engine water releases

• Off-normal releases—effectively the same as ULSD
 - Spills and leaks during production, distribution, and storage
 - Above- or below-ground storage tank & associated piping,
 - Liquid-transportation vehicles--rail tank car, tanker truck, tanker ship
 - Bulk-fuel transport pipeline
Production, Distribution, Storage and Use

• Approaches to producing renewable diesel (RD)
 - Hydrotreating vegetable oils or animal fats to make Hydrogenation Derived Renewable Diesel (HDRD)
 - Partially combusting a biomass to get CO/H₂ (syngas) utilizing the Fischer-Tropsch reaction to produce complex hydrocarbons
 - Emerging approaches based on synthesis of hydrocarbons through enzymatic reactions

• Producing HDRD
 - Co-processing in a conventional petroleum production stream
 - Dedicated HDRD (or R100) production with distribution, direct use or dilution

• Specifications for additives to RD expected to be similar to ULSD
Production, Distribution, Storage and Use

• Combustion emissions studies are ongoing

• Preliminary results suggest Renewable Diesel (RD) emissions & impacts that are within the range of ULSD emissions & impacts

 ➢ Absence of sulfur and aromatic compounds in pure RD

 ➢ Pure HDRD fuel showed significant emission benefits for CO, HC, NOx and PM—Secondary PM not yet addressed
 Below 10% RD, blends can result in CO and HC reductions, but not PM, NOx

 ➢ Volumetric fuel consumption is 5% higher because of lower HDRD density

 ➢ HDRD fuels avoid some biodiesel issues (oxidation, hygroscopicity, fouling, catalyst deactivation, etc).
Toxicity

• Key challenge
 – RD is not a defined chemical formulation or a defined mixture of components

• Limited tests indicate that RD has low relative toxicity
 – Major differences in health and ecological impact between existing diesel and RD blends are more likely to be associated with additives than with the hydrocarbon mix
 – Chemical comparison to conventional diesel is important for determining whether or how much additional toxicity tests are required
Transport and Fate

- The fate and transport of a fuel and its component chemicals in the environment depend on the multimedia transport properties of its constituent chemicals.
- Based on similarities in chemical composition, the multimedia environmental behavior of renewable diesel should be similar to ULSD.
- Impact of additives to fate and transport need to be evaluated.
Tier I Conclusions

- Renewable diesel (RD) is chemically similar to the ultra-low sulfur diesel (ULSD) fuel already in wide use in California.
- RD is compatible with existing refining and distribution infrastructure and can be used in current diesel engines without modification.
- Pure renewable diesel has reduced aromatic hydrocarbon content.
- Limited toxicity testing on rats reveals that pure RD has limited inherent toxicity and unlikely to exceed the inherent toxicity or mutagenicity of standard diesel.
- Life-cycle health impacts of renewable diesel blends are not likely to differ significantly from those of petroleum diesel.
Tier I Conclusions

- Knowledge gaps include
 - Additive impacts
 - Production, storage and distribution releases (off-normal)
 - Air emissions toxicity testing
 - Priority list of renewable diesel fuel formulations