Public Consultation Meeting Regulatory and Non-Regulatory Fuels Activities

February 25, 2004

California Environmental Protection Agency

Agenda

- + Introductions
- → Implementation Discussions
 - Phase 3 RFG
 - Diesel Fuel Lubricity
- + Potential Regulatory Activities
 - Phase 4 RFG
 - Diesel fuel for locomotove and marine diesel engines
 - Diesel fuel deposit control additives and diesel engine lubricating oils
 - Clean Fuels Outlets Hydrogen
 - Biodiesel
- → Presentations by Others
- + Open Discussion
- + Closing Remarks

)

Implementation Issues

3

Implementation of Phase 3 RFG Regulation

<u>4</u>

Phase 3 RFG Implementation Issues

- → Documentation for transfer of denatured ethanol for use in California gasoline
- Blending small amounts of finished gasoline into CARBOB terminal tanks
- → Blending small amounts of transmix into CARBOB terminal tanks
- → Other issues may exist

5

Documentation for Transfer of Denatured Ethanol

- → Importers and producers of ethanol must provide the following information with the product transfer documents:
 - Name, location and operator of the facilities at which the ethanol was produced or denatured
- Concerns about the practicality of this requirement
 - commingling of denatured ethanol
 - commingling of neat ethanol before it reaches a California production facility that adds the denaturant

Blending Finished Gasoline into CARBOB Terminal Tank

- → Blending of CARBOB with California gasoline is prohibited except for specific situations that involve a changeover in service
- → Address the blending of small amounts of finished gasoline into CARBOB terminal tanks
 - After calibration of ethanol meters
 - After pulling gasoline from service station tank
 - After aborted loading of ethanol and CARBOB to tanker truck

7

Blending Transmix into CARBOB Terminal Tanks

→ CaRFG3 regulations include provisions for enforcement protocols for blending transmix with finished gasoline but none for blending transmix with CARBOB

CaRFG3 Implementation Refinements

- Plan proposed amendments for October 2004 hearing
 - Identify conditions under which returning smalll amounts of gasoline to CARBOB terminal tanks is allowed
 - Allow protocols for blending transmix into CARBOB terminal tank
 - Allow ethanol shipper to maintain all sources of ethanol instead of providing on each transfer document
- ARB staff to announce interim policy on website pending completing of rulemakings

9

Implementation of Diesel Regulation

Diesel Fuel Lubricity

11

ARB Diesel Fuel Lubricity Standard Phase I: Protect Existing Equipment

- → 520 micron maximum WSD based on HFRR @60 deg C
- → Time frame: 90 day phase-in commencing August 1, 2004

ARB Diesel Fuel Lubricity Standard Phase 2: Protect Advanced Technology Fuel Injection Systems

- → Placeholder in regulation for 2006 lubricity standard
- Board resolution direction to staff:
 - Conduct technology assessment by 2005
 - Propose new lubricity standard to Board for 2006 if assessment determines:
 - HFRR maximum WSD of 460 microns, or more appropriate standard, should be implemented in 2006 with proposed 15 ppmw sulfur limit
- + Time frame:
 - Technology assessment complete 2005
 - 2006 standard: 90 day phase-in commencing June 1, 2006

12

Deference to ASTM Lubricity Standard

- ◆ ARB lubricity standards will defer to ASTM standards if:
 - For 2004:
 - ASTM establishes a standard at least as protective as ARB adopted standard
 - For 2006:
 - ASTM establishes a standard that is protective of advanced technology fuel injection systems
 - Division of Measurement Standards adopts

Status of ASTM Ballot

- + Current ballot is identical to ARB 2004 standard
 - Received negative votes
- + Current plans:
 - Reballot prior to June meeting

15

National Lubricity Standard for Diesel Fuel

◆ EPA is considering pursuit of lubricity regulation to align with ARB standard

Potential Regulatory Activities

17

Phase 4 RFG

1.8

Suggested Measures for Further Evaluation

◆ SIP commitment includes examination of feasibility and scope of further gasoline specifications

19

Suggested Measures for Further Evaluation (cont.)

Sulfur 5 ppm
 Oxygen 0 %wt.²
 Aromatics 25 %vol.
 Olefins 6 %vol.
 T50 200°
 T90 300°

→ Benzene 0.1% vol.

6.4 b - 6.5 psi

◆ RVP

Comparison of Flat Limits

	Phase 2	Phase 3	Suggested Measure
Sulfur ppm	40	20	5
Oxygen %wt.	2 ^a	2ª	0
Aromatics	25	25	25
Olefins %vol.	6	6	6
T50 °F	210	213	200
T90 °F	300	305	300
RVP psi	7.0	7.0 ^b	6.5 ^c
Benzene %vol.	1.0	0.8	0.1

21

Estimated Potential Benefits

◆ The estimated potential benefits associated with suggested measure in 2010:

	tons per day		
NOx	15		
Hydrocarbons	35		

Significant Issues

- + Costs
- + Supply

Significant Issues (cont.)

Capital	cents per gallon	\$/lb. controlled
Suggested Measure: 4 to 6 Billion dollars	10 - 20a	45 - 90 ^b
CaRFG2: 4 Billion	10	6.3 ^b
CaRFG3: 1 Billion	3	NA°

a. Depends on costs of importsb. Only HC and NOx emissions reductions used to calculate cost effectiveness

c. Intended to eliminate MTBE

Significant Issues (cont.)

- → Production and Imports
 - Could further reduce in-state production by about 15%
 - Require more imports

25

Significant Issues (cont.)

- ◆ Availability of Imports
 - Limited due to specifications that are radically different from federal RFG for rest of the nation
 - Sulfur 5 ppm cap vs 30 ppm average for federal RFG
 - Benzene 0.1% by volume vs 1% by volume for federal RFG

Other Significant Issues

- → Proposed 0% Oxygen Content
 - Federal CAA requires 2% oxygen content
 - Federal CAA oxygen requirement applies to 80% of all fuel sold in California
 - Would require a waiver of the federal oxygen requirement
 - Wintertime oxygen content requirement still in effect for the South Coast and parts of Imperial County

2.7

Other Significant Issues (cont.)

- ◆ Proposed 6.5 psi RFG limit makes production of complying fuel difficult if not impossible
 - Federal RVP minimum limit for fuel 6.4 psi
 - Leaves only 0.1 psi of flexibility
 - Reproducibility of test method is 0.2 psi

Conclusions

- Significant supply and production issues to be addressed
- → Feasibility assessments require additional investigation
- → Potential for emissions benefits for gasoline

29

CARB DIESEL FUEL USE WITH INTRASTATE

Why Evaluate Intrastate Marine and Locomotives?

- ◆ ARB Public Hearing July 24, 2003
- ◆ ARB Status Report October 23, 2003
- → ARB SIP Summit January 13-14, 2004
 - ARB staff directed to prepare an evaluation of potential concepts to reduce emissions from intrastate marine and locomotives

31

Line Haul Locomotive and Oceangoing Ship Fueling Patterns

- ◆ Operate nationally and internationally.
- ◆ Low quality fuels with high sulfur content.
- → Can fuel prior to arriving in California.
- → Fuel storage capacity sufficient to avoid fueling in California.
- → Most fuel dispensed in California consumed out-of-state.

Intrastate Harbor Craft and Locomotive Fueling Patterns

- ◆ Operate locally and regionally.
- → Fueled primarily at California locations.
- → Already some use of higher quality fuels.
- → Opportunities for additional use of cleaner fuels.

33

In-Use Sulfur Levels of Transportation
Fuels Consumed in California
(mm, mm, r.)

(ppmw)

Fuel Type	Current 2003	Anticipated 2006/2007
CARB Diesel	140	10
EPA Diesel On-Road Non-Road	360 3,200	10 340*
Marine Distillate	340-20,000	No Change
Marine Bunker Fuel	28,000	No Change

^{*} Currently unregulated. US EPA has proposed regulations.

Cleaner Fuel Opportunities Under Evaluation for Marine Vessels

CARB Diesel: Harbor craft

- ~25% PM Reduction
- ~10% NOx Reduction
- Greater use of addon controls

Marine Distillate: Ships at Dockside (auxiliary engines)

- ~60% PM Reduction
- ~10% NOx Reduction
- ~90% SOx Reduction

Lower Sulfur Marine **Bunker Fuel:**

Oceangoing ships at sea (main engines)

- ~20% PM Reduction
- ~40% SOx Reduction

Cleaner Fuel Opportunities Under Evaluation for Locomotives

Use of CARB Diesel: Short Haul and Switchers

- ~5% NOx Reductions
- ~20% PM Reductions
- · Greater use of add-on controls

USEPA's Proposed Non-Road Diesel: Line Haul Locomotives

- ~90% SOx reductions
- ~5% NOx reductions
- ~20% PM reductions

ARB Evaluation Process

- ◆ Gather information on intrastate marine and locomotives (e.g., engines, fuel use)
- ◆ ARB survey of marine and locomotives
- → Conduct future workshops
- ◆ ARB Board Meeting (4th Quarter 2004)?

37

ARB Webpages and List Serves

- → Http://www.arb.ca.gov/offroad/
- + Locomotives loco/loco.htm
- → Marine Vessels marinevess/marinevess.htm

Diesel Fuel Deposit Control Additives

39

Diesel Deposit Control Additives

- → SIP keep clean measure
- ◆ No current deposit control additive requirement for diesel fuel
- ◆ Issue may gain significance for 2007 engine designs

Deposit Control Additives Potential Benefits

- → Could reduce potential deposit formation in fuel systems and engines
- ◆ Keep engines closer to factory tolerances
- → Minimize deterioration rate of engine-out emission levels

41

Diesel Engine Lubricating Oils

Diesel Engine Lubricating Oils

- → Diesel engines consume (combust) lubrication oils as part of their normal operation
- ◆ Need to consider lubricating oil sulfur and ash content
 - Emissions
 - Impact on after treatment control technology

43

Industry Efforts to Study Lubricant Effects on Aftertreatment Devices

- → Government/Industry workgroup
 - DOE Advanced Petroleum-Based Fuels -Diesel Emissions Control (APBF-DEC) Program
- → Private consortium
 - Southwest Research Institute Diesel
 Aftertreatment Sensitivity to Lubricants (DASL)
 / Non-Thermal Catalyst Deactivation (N-TCD)

ASTM Heavy Duty Engine Oil Classification Panel

- → Industry developing HD engine oil specifications for use with aftertreatment technology
 - Proposed Category 10 (PC-10)
 - Lower sulfur, phosphorous, and sulfated ash
 - Engine durability issues to be addressed
- → Target API licensing: late 2005/early 2006
- → Oils in market 3rd quarter 2006

45

Summary of Potential Diesel Measures

- → Diesel deposit control additives
 - Need to investigate feasibility of deposit control additives - effectiveness and cost
 - Time frame: 2010+
- → Diesel engine lubricating oils:
 - Industry efforts may preclude regulatory need
 - Licensing of new API engine oil category targeted for late 2005/early 2006

Clean Fuels Outlets

47

Objective

→ To ensure that clean fuels are available for alternative fueled vehicles to operate and achieve the emissions benefits attributed from these vehicles

Key Points of Program

- → Require certain owners/lessors of gasoline stations to install clean fuel outlets
- → Requirement is triggered when 20,000 vehicles are certified to California LEV standards on a specific fuel

49

Considering Program Updates

- → Current program does not consider:
 - New fuel/vehicle technologies
 - · hydrogen fuel cells
 - hybrids
 - Infrastructure requirements
 - Lead time
 - Demand Needs
 - Mechanisms to adjust for market conditions

Tentative Schedule

→ Board hearing September 2004

51

Biodiesel

Background

- Generally refers to methyl and ethyl esters of fatty acids that are derived from natural products
 - Vegetable, animal, and grease
- ◆ ASTM D6751 establishes fuel specification for biodiesel as a blending component.
 - Excludes fatty acids
 - Glycerol, moisture, cold flow, others
- ◆ US Production capacity: 150 million gallons/yr
- → US Sales 2002: 20 million gallons/yr

53

Use of Biodiesel

- → Pure Biodiesel B100
- → Blends of Biodiesel
 - Common blends B2, B5, B20

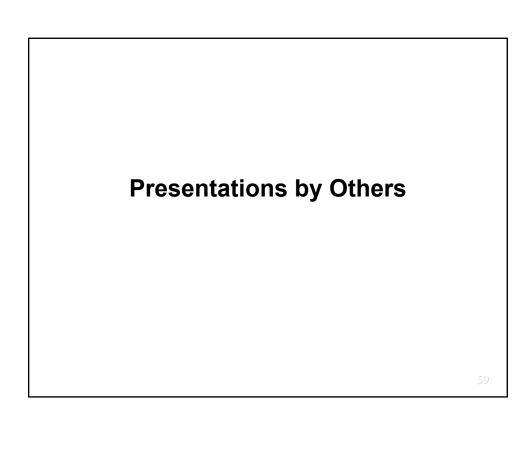
Biodiesel Properties Compared to Diesel

	Biodiesel	Average California Diesel
Energy Content btu/gal	119,000 (Soy) 116,000 (Animal)	131,000
Cetane No.	53	50
Sulfur ppm	<1	<u><</u> 15
Aromatics %vol.	Below detection limit	19 %vol.

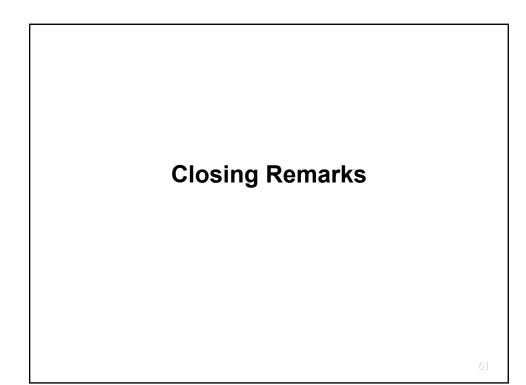
55

Biodiesel Emissions Compared to Diesel (cont.)

- ◆ Lowers greenhouse gas emissions wells to wheel
 - 3.2 units of energy produced per unit of energy used to produce biodiesel as compared to 0.8 units energy produced per unit of energy used for diesel
- → Generally reduces tail pipe emissions of PM, HC, CO
 - B100: reduces PM and CO 40%, THC 68%
 - B20 reduces PM and CO 12%, THC 20%


Biodiesel Emissions Compared to Diesel (cont.)

- + Increase in NOx emissions
 - B100 10% increase
 - B20(soybean) 2-4% increase in NOx
 - Feedstock affect NOx (soybean highest)


57

Issues with Biodiesel

- Engine durability and impact on lubrication oil
- -Fuel quality
- -Fuel stability
- -Cold flow characteristics
- Seal and material compatibility
- -NOx

Open Discussion

