Biodiesel and Renewable Diesel Rulemaking 2nd Public Workshop

Lex Mitchell
Bob Okamoto
May 19, 2010

Overview

- \textit{Background}
- Biodiesel Studies Update
- Comments from First Workshop
 - Literature Review
 - Fuel Properties
 - Certification
- Next Steps
- Contacts
- Discussion
Background

- Driving Forces:
 - Global Warming Solutions Act of 2006
 - Low Carbon Fuel Standard (2009)
 - Increasing demand for biofuels
 - Studies show an increase in NOx with increasing biodiesel blends

Background

- What is biodiesel?
 - Straight Vegetable Oil (SVO) vs Fatty Acid Methyl Esters (FAME)
 - Feed stocks
- What is renewable diesel?
 - Hydrotreating
 - Feed stocks
Biodiesel and renewable diesel blends:
- Blends are labeled B% or R% to signify the amount of biodiesel or renewable diesel blended into petroleum diesel
- Example:
 - B5 is a blend of 5 percent biodiesel and 95 percent petroleum diesel
 - R20 is a blend of 20 percent renewable diesel and 80 percent petroleum diesel

2006-2009
- Multimedia workgroup meetings began, multimedia testing largely completed but ongoing

2010
- First public workshop to discuss future regulation in January
Overview

- Background
- **Biodiesel Studies Update**
- Comments from First Workshop
 - Literature Review
 - Fuel Properties
 - Certification
- Next Steps
- Contacts
- Discussion

Biodiesel Studies Update

Emissions Studies Update

- CeCERT NOx mitigation and impact Study completed-two on-road engines
- TRU study
 - Part one: CARB, Soy B50, Soy B100
 - Changes in engine operation
 - Part two: CARB, Soy B5, Soy B20, B100
- Non-road engine
 - Pre-testing started
Biodiesel Studies Update

Emissions Studies Update Cont

- **Chassis testing at MTA**
 - In-depth emissions testing completed for C15 and MBE4000 equipped trucks
 - Chemical and health effects analysis
 - C15 expected to be completed by the July workshop
 - MBE4000 underway
 - Vehicle three, Cummins ISM equipped truck will start in the first part of June
 - School Bus with DPF

Biodiesel Studies Update

July Workshop

- Renewable diesel Tier one draft in June
- Biodiesel multimedia
 - Final Tier one (date)
 - Final Tier two protocol (date)
 - Tier two results
- Durability study
- Engine testing CeCERT
- TRU testing update
- Chassis testing MTA
 - In-depth testing for C15 and upon availability MBE4000
Overview

- Background
- Biodiesel Studies Update
- **Comments from First Workshop**
 - Literature Review
 - Fuel Properties
 - Certification
- Next Steps
- Contacts
- Discussion

May 19, 2010

Comments from First Workshop

- **Literature Review**
 - Clarify and expand NOx impact of biodiesel use.
 - CARB’s findings on NOx vs literature (esp. B5)
 - What is the NOx impact at low blend levels?
- Fuel Properties
 - Biodiesel Feedstock Effects
 - Gas To Liquid (GTL) diesel
 - GTL and renewable diesel properties
- Certification

May 19, 2010
Literature Review
Historical Perspective

Biodiesel program

- What did we know about the NOx impact of biodiesel use when we started the biodiesel program in 2006?
 - EPA Draft Technical Report
- What was the reason for the CARB study?
- What do we know now?
- What are the next steps?

May 19, 2010

Literature Review
Historical Perspective

What did we know about the NOx impact of biodiesel use at the start of the biodiesel program?

- Main reference was the EPA Report on the biodiesel impacts on exhaust emissions
 - Comprehensive review of the literature
 - Analysis of impacts based on base fuel, feedstock, engine class, etc.

May 19, 2010
Literature Review
Historical Perspective

Figure from Draft Technical Report cited when discussing the NOx impact from biodiesel

- 2% increase at B20 and 10% increase at B100
- Overall diesel base fuels

Literature Review
Historical Perspective

Not discussed as often is the scatter in the NOx trend line.

- To explain the range of results, EPA evaluated the effect of various factors such as base fuel and duty-cycle load effects
Literature Review

Historical Perspective

Selection criteria for base fuel analysis

Table III.C 2.e.1

<table>
<thead>
<tr>
<th>Base fuel emission group</th>
<th>Proposed Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. All base fuels to which biodiesel is added are assigned to the "average" emission category for the purposes of estimating emission benefits of biodiesel using the correlations in this report, unless</td>
<td></td>
</tr>
<tr>
<td>B1. The base fuel in question meets the requirements for highway diesel fuel sold in California or alternative requirements that are substantially similar to those in California, or</td>
<td></td>
</tr>
<tr>
<td>B2. The fuel in question meets all of the following conditions:</td>
<td></td>
</tr>
</tbody>
</table>

1. Total cetane number is greater than 52
2. Total aromatics content is less than 25 vol% |
3. Specific gravity is less than 0.84

For fuels meeting conditions B1 or B2, the base fuel should be assigned to the "clean" category.

EPA found NOx increases more when biodiesel is blended with clean base fuels (e.g., CARB/CARB-like diesel) than with average base fuels

B100: ~27% more NOx than clean diesel, ~7% more NOx than avg. diesel.
B20+clean diesel: ~5% more NOx than clean diesel alone
B20+avg. diesel: ~2% more NOx than avg. diesel alone
Literature Review

Historical Perspective

Another finding by the EPA showed that biodiesel effects on NOx emissions were related to average cycle power.

\[^1\text{Sze et al, 2007}^1\]

Why was CARB Biodiesel/Renewable diesel study initiated?

- EPA finding that biodiesel blended with CARB base fuels show a higher percent increase in NOx
- Expand limited data set especially newer technology engines
- Expand limited data set on low biodiesel blend levels
- Need for more robust studies
- Run duty-cycles of different loads
Literature Review
What do we know now?

- CARB study results
- Literature reviews
- Current literature

Literature Review
What do we know now

- CARB biodiesel/renewable study results
 - Study on-going, estimated completion date Sept. 2010
- Preliminary results
 - CARB study also shows higher NOx impact for CARB base fuels
 - Continue to refine the information as the study nears completion
 - Matches with other research showing base fuels have a significant impact
Literature Review

What do we know now?

Literature Reviews

- A Comprehensive Analysis of Biodiesel Impacts on Exhaust Emissions, EPA report 420-P-02-001, David Korotney, 2002
- CRC Report No. AVFL-17, S. Kent Hoekman, et al., 2009

Literature Review

What do we know now?

Reviews Cont

- Of the major literature review studies only the 2002 Draft Technical Report evaluated the effect of clean base fuels
Literature Review

Next Steps

- Review current literature for
 - Trends and mechanism
 - Emissions data low biodiesel blend levels
- Conduct an analysis of clean base fuels
 - CARB diesel base fuels
 - High cetane base fuels
 - Analysis criteria
 - How the analysis results will be reported

May 19, 2010

Literature Review

Next Steps

Review Current Literature

- Key examples
 - Eckerle, 2008
 - Sze, 2007
 - Cheng, 2006
 - Thompson, 2010
 - Others?
Literature Review
Next Steps

Base Fuels Evaluated
- CARB diesel fuels
- High cetane fuels

Analysis results
- Compare biodiesel NOx impact of CARB base fuels with
 - High Cetane base fuels (23 studies)
 - to all diesels base fuels (114)
 - to EPA study results
Comparison to other factors that affect NOx

- If possible will look at other factors; however,
- Limited by small data set which may preclude the following evaluations
 - Feedstock
 - Engine
 - Heavy, Medium, Light duty vehicles
 - On-road and non-road

Selection of studies

- Heavy duty engines, no test engines
- No duplicate studies
- Published in a peer-reviewed journal, by a research center, or company
- Experimental design, no modeled results.
Literature Review
Next Steps-Criteria for Analysis

Summary of specifications for fuels used for the analysis
- Base fuel, CN ≥ 48, Aromatics ≤ 21
- Blend is B5, B10, B20
- Biodiesel is made from feedstocks that are an agriculture crop, like soy, or waste stream, like beef tallow.

May 19, 2010

Literature Review
Next Steps-Criteria for Analysis

CARB Baseline Diesel
- Suggested studies?
Literature Review
CARB Diesel Studies

- 114 articles on biodiesel emission effects
- Considered studies on biodiesel produced from currently available feedstocks (generally soy, canola, rapeseed, palm, yellow grease, animal tallow)

Literature Review
Comments Requested

- Specific comments requested on:
 - Methodology of search
 - Selection of CARB representative studies
 - Quality of data
Literature Review
Discussion

- Questions or Comments?

Comments from First Workshop

- Literature Review
 - Clarify and expand NOx impact of biodiesel use.
 - CARB’s findings on NOx vs literature (esp. B5)
 - What is the NOx impact at low blend levels?

- Fuel Properties
 - Biodiesel Feedstock Effects
 - Gas To Liquid (GTL) diesel
 - GTL and renewable diesel properties

- Certification
Fuel Properties

Overview

- Two components contribute to NOx emissions
 - Biodiesel Feedstocks and Blendstocks
 - Hydrocarbon Diesel
- Goal: specify properties of each component that are predictors of NOx

Fuel Properties

Biodiesel Feedstocks and Blendstocks

- Biodiesel blends have different emissions effects based upon feedstock
 - ARB testing found soy biodiesel increased NOx more than animal tallow biodiesel
 - This result is generally supported in literature
Fuel Properties
Biodiesel Feedstocks and Blendstocks

- Problems associated with use of feedstock to predict NOx effects:
 - Biodiesel feedstocks are frequently mixed
 - Multiple feedstock properties account for differences in emissions, including saturation, chain length and branching

Fuel Properties
Biodiesel Feedstocks and Blendstocks

- Can blendstock properties predict feedstock based variation in emissions?
 - Properties of interest:
 - Iodine Number EN 14111
 - H, C and O content ASTM D5291
 - Properties are indicators of saturation, chain length and branching
Fuel Properties
Hydrocarbon Diesel

- Properties of base fuel affect NOx emissions of the blend
- Higher cetane, lower aromatics and lower density base fuels can reduce or eliminate NOx increase

Specifications for the base fuel:
- Predictive Model:
 - Used by regulated party for compliance; or
 - Used by ARB to determine compliant specifications
Fuel Properties
Hydrocarbon Diesel

- U.S. EPA Unified NOx Model
 - Strategies and Issues in Correlating Diesel Fuel Properties with Emissions

Fuel Properties
Hydrocarbon Diesel

<table>
<thead>
<tr>
<th>NOx Trend</th>
<th>NOx Predictors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biodiesel Blendstock</td>
<td>• Iodine Number</td>
</tr>
<tr>
<td></td>
<td>• C, H, and O content</td>
</tr>
<tr>
<td>Hydrocarbon Diesel Base Fuel</td>
<td>Predictive Model:</td>
</tr>
<tr>
<td></td>
<td>• Cetane Number</td>
</tr>
<tr>
<td></td>
<td>• Aromatic Content</td>
</tr>
<tr>
<td></td>
<td>• Density or API Gravity</td>
</tr>
</tbody>
</table>
Fuel Properties
Hydrocarbon Diesel

- High Cetane hydrocarbon fuels:
 - Renewable Diesel
 - Simple mixture of hydrocarbons derived from:
 - Hydrotreatment of biological feedstocks
 - Enzymatic reactions of biological feedstocks
 - GTL & BTL
 - Complex mixture of hydrocarbons derived from syngas from fossil or biological sources

Fuel Properties
Comments Requested

- Specific comments requested on:
 - Biodiesel blendstock properties
 - Hydrocarbon diesel properties
 - Model and specifications

May 19, 2010
Comments from First Workshop

- Literature Review
 - Clarify and expand NOx impact of biodiesel use.
 - CARB’s findings on NOx vs literature (esp. B5)
 - What is the NOx impact at low blend levels?
- Fuel Properties
 - Biodiesel Feedstock Effects
 - Gas To Liquid (GTL) diesel
 - GTL and renewable diesel properties
- Certification

Certification

Concept

- Emissions equivalent certification based upon certification in diesel rules (13 CCR 2282 g)
 - Issues
Certification
Concept

- Current process uses 1991 DDC Series 60 for testing
- Two primary problems:
 - Engine becoming harder to find in serviceable condition
 - Engine becoming less representative of on-road fleet

Certification
Concept

- Possible modifications:
 - Newer engine for biodiesel certification program
 - 2006 Cummins ISM
Certification

Concept

- Support for 2006 Cummins ISM:
 - No DPF means accurate PM measurement
 - Cummins is largest engine model in California fleet
 - Biodiesel testing conducted on this engine, large amount of data available

Certification

Planned Testing

- Post-rulemaking:
 - Additional testing on mitigation options after rulemaking
 - Testing done to meet requirements of certification, consideration as a certified option
Certification
Comments Requested

- Specific comments requested on:
 - Engine choice
 - Framework

Overview

- Background
- Biodiesel Studies Update
- Comments from First Workshop
 - Literature Review
 - Fuel Properties
 - Certification
- Next Steps
- Contacts
- Discussion
Next Steps

- Comments requested Monday, June 21
- Next Workshop (tentatively mid-July)
- Additional Workshops as needed
- Proposal late August
- Board meeting October 2010

Contacts

Lex Mitchell
Air Pollution Specialist
(916) 327-1513
amitchel@arb.ca.gov

Robert Okamoto
Staff Air Pollution Specialist
(916) 327-2953
rokamoto@arb.ca.gov

Floyd Vergara
Manager, Industrial Section
(916) 327-5986
fvergara@arb.ca.gov

http://www.arb.ca.gov/fuels/diesel/altdiesel/biodiesel.htm
<table>
<thead>
<tr>
<th>Questions & Discussion</th>
</tr>
</thead>
</table>

May 19, 2010