

# San Joaquin Valley Unified Air Pollution Control District

# **Emission Inventory Methodology** 050 - INDUSTRIAL NATURAL GAS COMBUSTION

#### I. Purpose

This methodology is to be used to estimate area source emissions from the combustion of natural gas by industrial sources not covered in our point source inventory or other area source categories. This estimation does not include natural gas used for cogeneration or oil and gas extraction as these sources are covered in other categories.

### **II.** Applicability

The emission calculations from this Area Source Methodology apply to facilities that are identified by the following CES and EIC code(s):

|       |                   | Description                                        |
|-------|-------------------|----------------------------------------------------|
| 66787 | 050-040-0110-0000 | Industrial Stationary - I.C. Engines - Natural Gas |
| 47142 | 050-995-0110-0000 | Industrial Natural Gas Combustion (Unspecified)    |

#### **III.** Point Source Reconciliation

The SIC/SCC combinations that should be used in the Point Source Inventory when entering or updating emissions from these categories or sources are listed in Appendix A.

#### IV. Methodology Description

The industrial sector consumes natural gas for process uses (primarily heat), boiler fuel, space heat, electricity generation and feedstock. The combustion of natural gas in the industrial sector of the San Joaquin Valley Air Basin can be divided into two categories: 1) stationary internal combustion engines (reciprocating engines and turbines) and 2) unspecified. The "unspecified" category includes the combustion of natural gas in heaters, boilers, and burners.

# V. Activity Data

<u>Consumption</u>. The total amount of natural gas consumed in the industrial sector for each county in the district in 2005 was obtained from the California Energy Commission (CEC) and is presented below. This estimation excludes natural gas used for electrical generation and for oil and gas extraction as these industries are covered by other categories. Total point source consumption is obtained through the District's point source inventory. The Area Source consumption is the difference between the total District consumption and the point source consumption and is displayed below.

|             | 2005 Industri | 2005 Industrial Natural Gas Consumption (MMSCF) |                            |  |  |  |
|-------------|---------------|-------------------------------------------------|----------------------------|--|--|--|
|             |               |                                                 | Area Source<br>Consumption |  |  |  |
| Fresno      | 6073.55       | 5206.14                                         | 867.41                     |  |  |  |
| Kern        | 6234.38       | 2690.72                                         | 3543.66                    |  |  |  |
| Kings       | 1970.13       | 2448.30                                         | 0.00                       |  |  |  |
| Madera      | 3117.01       | 1405.96                                         | 1711.05                    |  |  |  |
| Merced      | 3413.84       | 3899.11                                         | 0.00                       |  |  |  |
| San Joaquin | 5788.47       | 6327.53                                         | 0.00                       |  |  |  |
| Stanislaus  | 5546.81       | 5337.70                                         | 209.11                     |  |  |  |
| Tulare      | 6664.96       | 4306.65                                         | 2358.31                    |  |  |  |
|             |               |                                                 | 8689.54                    |  |  |  |

<sup>a</sup> The California Energy Commission (CEC) appears to be underreporting deliveries for Kings, Merced and San Joaquin Counties and we've asked them to verify their data. CEC includes Food and Ag SIC's in the commercial sector, but CARB reconciles them to either industrial or commercial EICs depending on SCC unit. This results in the overestimation of the area source emissions for commercial natural gas combustion and an underestimation for industrial natural gas combustion.

In 1994, the Energy Information Administration (EIA, 1994) determined that 42% of natural gas consumed in the manufacturing sector was for process use (mainly for process heating), 35% was consumed as boiler fuel, 11% was consumed for non-process use (split approximately evenly between space heating and electricity generation), and 10% was consumed as feedstock. From this, it is assumed that 84% of natural gas consumption in the industrial sector was for those devices in the "unspecified" category (heaters, boilers, and furnaces), 6% was consumed for turbines/reciprocating engines, and 10% was consumed for purposes not associated with combustion emissions (STI, 2002).

# VI. Emission Factors

CO, NO<sub>x</sub>, SO<sub>x</sub>, VOC and PM emission factors for reciprocating engines and "unspecified" industrial natural gas combustion were obtained from the EPA's AP-42 document (EPA, 1998), (EPA, 2000b). Reciprocating engines are 4-stroke lean-burn engines. "Unspecified" sources are treated as uncontrolled small boilers.

|                       | Emis | ssions (pou | ınds per mi | llion cubic | feet)  |
|-----------------------|------|-------------|-------------|-------------|--------|
|                       |      |             |             |             | PM     |
| Reciprocating Engines | 4.08 | 0.317       | 0.00059     | 0.118       | 0.0099 |
| Unspecified           | 100  | 84          | 0.6         | 5.5         | 7.6    |

# VII. Sample Calculations

For Fresno County, the  $NO_x$  emissions from the combustion of natural gas in unspecified processes are calculated as follows:

#### Given:

- a. 2005 Area Source industrial natural gas consumption for Fresno County was 6056.58 MMSCF.
- b. 84% of industrial natural gas consumption is assigned to the unspecified category.
- c. Unspecified sources are treated as uncontrolled small boilers with a NO<sub>x</sub> emission factor of 100 pounds per million cubic feet of natural gas burned.

#### Emissions:

Total Emissions = (Area Source Use) x (Categorical Proportion) x (Emission Factor) x (1 ton / 2000 lbs)

$$\frac{1,022.93 \text{ million } cu \text{ ft}}{\text{year}} \times 0.84 \times \frac{100 \text{ lb } \text{NO}_x}{\text{million } cu \text{ ft}} \times \frac{1 \text{ ton}}{2000 \text{ lbs}} = \frac{42.96 \text{ tons } \text{NO}_x}{\text{year}}$$

Therefore, there are 42.96 tons of NO<sub>x</sub> produced every year in Fresno County through the combustion of natural gas in the "unspecified" category.

# VIII. Assumptions

- a. Natural gas deliveries are accurately reported by the California Energy Commission.
- b. The point source process rates are accurate.
- c. The emission factors from AP-42 are accurate.
- d. Reciprocating engines are 4-Stroke Lean-Burn Engines constantly operating at 90-105% load.

- e. Unspecified sources are uncontrolled small boilers.
- f. All sulfur in the fuel is assumed to be converted to SO<sub>2</sub>.
- g. All natural gas powered internal combustion engines less than 50 horsepower are reciprocating engines.
- h. The manufacturing sector is representative of the industrial sector.
- i. The method used to allocate natural gas consumption within the industrial sector accurately reflects the conditions in the District.
- j. The method used to allocate natural gas consumption within the industrial sector is valid for both the point source and the area source consumption.

#### IX. Temporal Variation

<u>Daily</u>: ARB Code 24. 24 hours per day - uniform activity during the day <u>Weekly</u>: ARB Code 7. 7 days per week - uniform activity every day of the week <u>Monthly</u>: Monthly activity in California is relatively uniform as illustrated by 2005 industrial natural gas delivery data from the U.S. Department of Energy's Energy Information Administration presented below:

|           |        | Activity Level<br>(% of annual) |
|-----------|--------|---------------------------------|
| January   | 72,186 | 9.3%                            |
| February  | 71,100 | 9.1%                            |
| March     | 64,949 | 8.3%                            |
| April     | 67,659 | 8.7%                            |
| May       | 66,643 | 8.6%                            |
| June      | 62,253 | 8.0%                            |
| July      | 64,910 | 8.3%                            |
| August    | 62,139 | 8.0%                            |
| September | 64,460 | 8.3%                            |
| October   | 62,988 | 8.1%                            |
| November  | 61,260 | 7.9%                            |
| December  | 58,508 | 7.5%                            |
|           |        | 100.0%                          |

#### X. Spatial Variation

Industrial natural gas deliveries in 2005 for each county in the SJVAPCD were provided by the California Energy Commission (Gough, 2006) and were presented previously in Section V. Within each county, activity can be assigned to parcels zoned for industrial activity.

#### XI. Growth Factor

Industrial Stationary I.C. Engines - Natural Gas: CARB Category 28 (Pechan, 2005).

Industrial Natural Gas Combustion (Unspecified): CARB Category 29 (Pechan, 2005).

Growth factors are included Appendix B and C.

#### XII. Control Level

Emission units within this area source category may be subject to the following District Rules:

|      | Rule Description                                                                |
|------|---------------------------------------------------------------------------------|
| 4701 | Internal Combustion Engines - Phase 1                                           |
| 4702 | Internal Combustion Engines - Phase 2                                           |
| 4703 | Stationary Gas Turbines                                                         |
| 4305 | Boilers, Steam Generators, and Process Heaters - Phase 2                        |
| 4306 | Boilers, Steam Generators, and Process Heaters - Phase 3                        |
| 4307 | Boilers, Steam Generators, and Process Heaters - 2.0 MMBtu/hr to 5.0 MMBtu/hr   |
| 4308 | Boilers, Steam Generators, and Process Heaters (0.075 MMBtu/hr to 2.0 MMBtu/hr) |
| 4309 | Dryers, Dehydrators and Ovens                                                   |
| 4311 | Flares                                                                          |
| 4313 | Lime Kilns                                                                      |
| 4351 | Boilers, Steam Generators, and Process Heaters - Phase 1                        |

# XIII. Chemical Speciation

|                                                              | ARB Profile # |     | Fractions |          |       |                   |
|--------------------------------------------------------------|---------------|-----|-----------|----------|-------|-------------------|
|                                                              |               |     |           |          |       | PM <sub>2.5</sub> |
| Stationary I.C. Engine - Natural Gas                         |               | 123 |           |          | 0.994 | 0.992             |
| Internal Combustion Engines -<br>Reciprocating - Natural Gas | 719           |     | 0.091428  | 0.091428 |       |                   |
| Gaseous Material Combustion                                  |               | 120 |           |          | 1     | 1                 |
| External Combustion Boiler -<br>Natural Gas                  | 3             |     | 0.422181  | 0.422181 |       |                   |

### XIV. Assessment Of Methodology

This area source estimate relies on point source and total District consumption of natural gas to determine area source consumption. It is important that the point source inventory be accurate and complete.

Although all internal combustion engines less than 50 horsepower are assumed to be reciprocating engines, there are proposals for microturbines within the District in the future. However, these microturbines are not expected to make a significant impact on the area source estimation.

The manner by which the EIA broke down the natural gas usage in the manufacturing sector (EIA, 1994) is used as a surrogate for the determination of industrial natural gas consumption. This is based on a national study performed in 1994 and representing the manufacturing sector only. Future research or studies could lead to a more accurate and up-to-date depiction of the natural gas consumption in the industrial sector.

| CEIDARs Inventory Year 2004 |        |                                    |               |         |      |                |
|-----------------------------|--------|------------------------------------|---------------|---------|------|----------------|
|                             |        | Emissions (tons/year) <sup>1</sup> |               |         |      |                |
|                             |        |                                    |               |         |      | $PM_{2.5}^{2}$ |
|                             | Ind    | ustrial Stat                       | ionary I.C. E | Engines |      |                |
| Fresno                      | 0.00   | 0.00                               | 0.00          | 0.00    | 0.00 |                |
| Kern                        | 40.15  | 7.30                               | 0.00          | 3.65    | 0.00 |                |
| Kings                       | 759.20 | 240.90                             | 0.00          | 0.00    | 0.00 |                |
| Madera                      | 0.00   | 0.00                               | 0.00          | 0.00    | 0.00 |                |
| Merced                      | 0.00   | 0.00                               | 0.00          | 0.00    | 0.00 |                |
| San Joaquin                 | 0.00   | 0.00                               | 0.00          | 0.00    | 0.00 |                |
| Stanislaus                  | 0.00   | 0.00                               | 0.00          | 0.00    | 0.00 |                |
| Tulare                      | 0.00   | 0.00                               | 0.00          | 0.00    | 0.00 |                |
|                             |        |                                    |               |         |      | 0.00           |
|                             |        | Uns                                | specified     |         |      |                |
|                             |        |                                    |               |         |      |                |
|                             |        |                                    |               |         |      |                |
|                             |        |                                    |               |         |      |                |
|                             |        |                                    |               |         |      |                |
|                             |        |                                    |               |         |      |                |
|                             |        |                                    |               |         |      |                |
|                             |        |                                    |               |         |      |                |
|                             |        |                                    |               |         |      |                |
|                             |        |                                    |               |         |      | 106.0          |

# XV. Emissions Comparison

<sup>1</sup> Emissions in CEIDARS are reported in tons per day to 1/100<sup>th</sup> of a ton. Therefore, emissions of less than 0.005 tons per day (0.18 tons per year) are reported as zero.

 $^{2}$  PM<sub>2.5</sub> data reported as a total sum of all counties only.

| 2005 Emissions Calculated with this Methodology |      |                       |               |         |      |                   |
|-------------------------------------------------|------|-----------------------|---------------|---------|------|-------------------|
|                                                 |      | Emissions (tons/year) |               |         |      |                   |
|                                                 |      |                       |               |         |      | PM <sub>2.5</sub> |
|                                                 | Ind  | lustrial Stat         | ionary I.C. E | Engines |      |                   |
| Fresno                                          | 0.11 | 0.01                  | 0.00          | 0.00    | 0.03 | 0.03              |
| Kern                                            | 0.43 | 0.03                  | 0.00          | 0.01    | 0.10 | 0.10              |
| Kings                                           | 0.00 | 0.00                  | 0.00          | 0.00    | 0.00 | 0.00              |
| Madera                                          | 0.21 | 0.02                  | 0.00          | 0.01    | 0.05 | 0.05              |
| Merced                                          | 0.00 | 0.00                  | 0.00          | 0.00    | 0.00 | 0.00              |
| San Joaquin                                     | 0.00 | 0.00                  | 0.00          | 0.00    | 0.00 | 0.00              |
| Stanislaus                                      | 0.03 | 0.00                  | 0.00          | 0.00    | 0.01 | 0.01              |
| Tulare                                          | 0.29 | 0.02                  | 0.00          | 0.01    | 0.07 | 0.07              |
|                                                 |      |                       |               |         |      | 0.26              |
|                                                 |      | Uns                   | specified     |         |      |                   |
|                                                 |      |                       |               |         |      | 1.68              |
|                                                 |      |                       |               |         |      | 6.85              |
|                                                 |      |                       |               |         |      | 0.00              |
|                                                 |      |                       |               |         |      | 3.31              |
|                                                 |      |                       |               |         |      | 0.00              |
|                                                 |      |                       |               |         |      | 0.00              |
|                                                 |      |                       |               |         |      | 0.40              |
|                                                 |      |                       |               |         |      | 4.56              |
|                                                 |      |                       |               |         |      | 16.79             |

| Change in Emissions 2004 to 2005 |         |                       |             |         |      |                   |
|----------------------------------|---------|-----------------------|-------------|---------|------|-------------------|
|                                  |         | Emissions (tons/year) |             |         |      |                   |
|                                  |         |                       |             |         |      | PM <sub>2.5</sub> |
|                                  | Ind     | ustrial Stat          | ionary I.C. | Engines |      |                   |
| Fresno                           | 0.11    | 0.01                  | 0.00        | 0.00    | 0.03 |                   |
| Kern                             | -39.72  | -7.27                 | 0.00        | -3.64   | 0.10 |                   |
| Kings                            | -759.20 | -240.90               | 0.00        | 0.00    | 0.00 |                   |
| Madera                           | 0.21    | 0.02                  | 0.00        | 0.01    | 0.05 |                   |
| Merced                           | 0.00    | 0.00                  | 0.00        | 0.00    | 0.00 |                   |
| San Joaquin                      | 0.00    | 0.00                  | 0.00        | 0.00    | 0.00 |                   |
| Stanislaus                       | 0.03    | 0.00                  | 0.00        | 0.00    | 0.01 |                   |
| Tulare                           | 0.29    | 0.02                  | 0.00        | 0.01    | 0.07 |                   |
|                                  |         |                       |             |         |      | 0.26              |
|                                  |         | Uns                   | specified   |         |      |                   |
|                                  |         |                       |             |         |      |                   |
|                                  |         |                       |             |         |      |                   |
|                                  |         |                       |             |         |      |                   |
|                                  |         |                       |             |         |      |                   |
|                                  |         |                       |             |         |      |                   |
|                                  |         |                       |             |         |      |                   |
|                                  |         |                       |             |         |      |                   |
|                                  |         |                       |             |         |      |                   |
|                                  |         |                       |             |         |      | -89.06            |

### XVI. Update Schedule

Data is collected on a yearly basis within ARB's CEIDARs database as well as our point source inventory. Energy consumption data may be obtained through the California Energy Commission on an annual basis. It is therefore recommended that this methodology is updated on a yearly basis.

|                   |   | Source of Emissions<br>(Point Source Inventory / Data Gathering) |
|-------------------|---|------------------------------------------------------------------|
| 050-040-0110-0000 | 1 | Point Source Inventory / Data Gathering                          |
| 050-995-0110-0000 | 1 | Point Source Inventory / Data Gathering                          |

#### XVII. References

- a. California Air Resources Board (2006). CEIDARS Emission Inventory Categorization Database.
  <<u>http://www.arb.ca.gov/app/emsinv/dist/rpts/sub\_eic.php</u>> (May 31, 2006).
- b. E.H. Pechan and Associates (2005). Appendix A: Industrial fuel combustion, Natural gas. In: Documentation for the draft 2002 nonpoint source national emission inventory for criteria and hazardous air pollutants (March 2005 version). Prepared for the Emissions Inventory Group (D205-01), U.S. Environmental Protection Agency. Pages A88-A90.
- c. Energy Information Administration, EIA (1994). How Changing Energy Markets Affect Manufacturing. <<u>http://www.eia.doe.gov/emeu/mecs/mecs94/special\_topics/restructuring\_mecs94.</u> <u>htm</u>>
- d. Gough, A. (2006). E-mailed 2005 industrial natural gas consumption data from the California Energy Commission, Sacramento, CA to David Garner, San Joaquin Valley Unified APCD.
- e. Sonoma Technology, Inc. STI (2002). Central California ozone study, attachment A: Natural gas combustion. <<u>http://www.arb.ca.gov/ei/areasrc/ccosmethods.html</u>>
- f. United States Environmental Protection Agency (1998). AP 42 Section 1.4: Natural gas combustion. U.S. GPO, Washington D.C. <<u>http://www.epa.gov/ttn/chief/ap42/ch01/final/c01s04.pdf</u>>
- g. United States Environmental Protection Agency (2000a). AP 42 Section 3.1: Stationary Gas Turbines. U.S. GPO, Washington D.C. <a href="http://www.epa.gov/ttn/chief/ap42/ch03/final/c03s01.pdf">http://www.epa.gov/ttn/chief/ap42/ch03/final/c03s01.pdf</a>

h. United States Environmental Protection Agency (2000b). AP 42 Section 3.2: Natural gas-fired reciprocating engines. U.S. GPO, Washington D.C. <<u>http://www.epa.gov/ttn/chief/ap42/ch03/final/c03s02.pdf</u>>

|                   |      |          | Point Source Type                                                                             |
|-------------------|------|----------|-----------------------------------------------------------------------------------------------|
| 050-995-0110-0000 | 2631 | 10100601 | Industrial NG Combustion - Electric Generation - Ext. Comb. Boiler - > 100MMBtu/hr EXTF       |
| 050-995-0110-0000 | 2813 | 10100602 | Industrial NG Combustion - Electric Generation - Ext. Comb. Boiler - < 100MMBtu/hr EXTF       |
| 050-995-0110-0000 | 2899 | 10100603 | Industrial NG Combustion - Electric Generation - Ext. Comb. Boiler - < 10MMBtu/hr EXTF        |
| 050-995-0110-0000 | 2421 | 10100604 | Industrial NG Combustion - Electric Generation - Ext. Comb. Boiler - Tan Fired Boilers        |
| 050-005-0110-0000 | 3599 | 10200601 | Industrial NG Combustion - Industrial - Ext. Comb. Boiler - > 100MMBtu/hr EXTF                |
| 050-005-0110-0000 | 3599 | 10200602 | Industrial NG Combustion - Industrial - Ext. Comb. Boiler - 10-100MMBtu/hr EXTF               |
| 050-005-0110-0000 | 3599 | 10200603 | Industrial NG Combustion - Industrial - Ext. Comb. Boiler - < 10MMBtu/hr EXTF                 |
| 052-005-0110-0000 | 724  | 10201002 | Industrial NG Combustion - Industrial - Ext. Comb. Boiler - Liq. Petroleum Gas - Propane      |
| 050-995-0110-0000 | 2819 | 10201401 | Industrial NG Combustion - Industrial - Ext. Comb. Boiler - CO Boiler - Propane               |
| 050-995-0110-0000 | 2911 | 10300601 | Industrial NG Combustion - Commercl-Instutnl - > 100MMBtu/hr EXTF                             |
| 050-995-0110-0000 | 3585 | 10300602 | Industrial NG Combustion - Commercl-Instutnl - 10-100MMBtu/hr EXTF                            |
| 050-995-0110-0000 | 3599 | 10300603 | Industrial NG Combustion - Commercl-Instutnl - < 10MMBtu/hr EXTF                              |
| 050-995-0110-0000 | 2500 | 10500105 | Industrial NG Combustion - Industrial - Ext. Comb. Boiler - Space Heater - Distillate Oil     |
| 050-020-0110-0000 | 3599 | 10500106 | Industrial NG Combustion - Industrial - Ext. Comb. Boiler - Space Heater - Natural Gas        |
| 050-995-0110-0000 | 3621 | 10500206 | Industrial NG Combustion - Commercl-Instutnl - Ext. Comb. Boiler - Space Heater - Natural Gas |
| 050-040-0110-0000 | 2711 | 20100202 | Industrial NG Combustion - Electric Generation - Int. Comb NG - Reciprocating                 |
| 050-995-0110-0000 | 3511 | 20100209 | Industrial NG Combustion - Electric Generation - Int. Comb NG - Turbine: Exhaust              |
| 050-045-0110-0000 | 1629 | 20200201 | Industrial NG Combustion - Industrial - Int. Comb NG - Turbine                                |
| 060-040-0110-0000 | 1442 | 20300201 | Industrial NG Combustion - Commercl-Instutnl - Int. Comb NG - Reciprocating                   |
| 050-995-0110-0000 | 3083 | 22890003 | Industrial NG Combustion                                                                      |
| 050-010-0110-0000 | 2899 | 30190003 | Industrial NG Combustion - Fuel Fired Equipment - Chemical Mfg Process Heaters - NG           |
| 130-130-0110-0000 | 2899 | 30190013 | Industrial NG Combustion - Fuel Fired Equipment - Chemical Mfg Incinerators - NG              |
| 050-995-0110-0000 | 3999 | 30290003 | Industrial NG Combustion - Fuel Fired Equipment - Food/Agriculture - Process Heaters - NG     |
| 050-010-0110-0000 | 3312 | 30390003 | Industrial NG Combustion - Fuel Fired Equipment - Primary Metals - Process Heaters - NG       |
| 130-130-0110-0000 | 3089 | 30390013 | Industrial NG Combustion - Fuel Fired Equipment - Primary Metals - Incinerators - NG          |
| 130-132-0110-0000 | 3089 | 30390023 | Industrial NG Combustion - Fuel Fired Equipment - Primary Metals - Flares - NG                |
| 050-010-0110-0000 | 3599 | 30400407 | Industrial NG Combustion - Sec. Lead - Secondary Metals - Pot Furnace Heaters - NG            |
| 050-010-0110-0000 | 3433 | 30490003 | Industrial NG Combustion - Fuel Fired Equipment - Secondary Metals - Process Heaters - NG     |
| 130-130-0110-0000 | 3499 | 30490013 | Industrial NG Combustion - Fuel Fired Equipment - Secondary Metals - Incinerators - NG        |
| 050-995-0110-0000 | 3398 | 30490023 | Industrial NG Combustion - Fuel Fired Equipment - Secondary Metals - Flares - NG              |
| 050-995-0110-0000 | 3433 | 30490033 | Industrial NG Combustion - Fuel Fired Equipment - Secondary Metals - Furnaces - NG            |
| 050-010-0110-0000 | 1611 | 30500206 | Industrial NG Combustion - Asphalt Concrete - Petroleum Industry - Asphalt Heater - NG        |
| 050-010-0110-0000 | 3271 | 30500332 | Industrial NG Combustion - Brick Mfg Mineral Products - Curing & Firing - Gas Kiln Other Type |
| 050-010-0110-0000 | 3567 | 30590003 | Industrial NG Combustion - Fuel Fired Equipment - Mineral Products - Process Heaters - NG     |
| 130-130-0110-0000 | 2819 | 30590013 | Industrial NG Combustion - Fuel Fired Equipment - Mineral Products - Incinerators - NG        |
| 050-995-0110-0000 | 1311 | 30600105 | Industrial NG Combustion - Petroleum Refining - Petroleum Industry - Process Heaters - NG     |

# XVIII. Appendix A. SIC and SCC combinations to be used for each EIC reconciled with this source category

#### Page 10 of 13

G:\HEARTs\AREA\050 - MANUFACTURING AND INDUSTRIAL\ Industrial Natural Gas Combustion\Mthd\_IndustrialNGCombustion\_SJV\_2005.doc

|                   |      |          | Point Source Type                                                                             |
|-------------------|------|----------|-----------------------------------------------------------------------------------------------|
| 050-010-0110-0000 | 2499 | 30790003 | Industrial NG Combustion - Fuel Fired Equipment - Wood Products - Process Heaters - NG        |
| 130-130-0110-0000 | 2621 | 30790013 | Industrial NG Combustion - Fuel Fired Equipment - Wood Products - Incinerators - NG           |
| 050-010-0110-0000 | 3089 | 30890003 | Industrial NG Combustion - Fuel Fired Equipment - Rubber/Plastics - Process Heaters - NG      |
| 130-130-0110-0000 | 3089 | 30890013 | Industrial NG Combustion - Fuel Fired Equipment - Rubber/Plastics - Incinerators - NG         |
| 050-010-0110-0000 | 3599 | 30990003 | Industrial NG Combustion - Fuel Fired Equipment - Fabricated Metals - Process Heaters - NG    |
| 130-130-0110-0000 | 5085 | 30990013 | Industrial NG Combustion - Fuel Fired Equipment - Fabricated Metals - Incinerators - NG       |
| 050-995-0110-0000 | 3369 | 30990023 | Industrial NG Combustion - Fuel Fired Equipment - Fabricated Metals - Flares - NG             |
| 050-995-0110-0000 | 2911 | 31000404 | Industrial NG Combustion - Fuel Fired Equipment - Oil & Gas Prodn Process Heaters - NG        |
| 050-995-0110-0000 | 2851 | 31000414 | Industrial NG Combustion - Fuel Fired Equipment - Oil & Gas Prodn Steam Generators - NG       |
| 050-995-0110-0000 | 3594 | 31390003 | Industrial NG Combustion - Fuel Fired Equipment - Electrical Equipment - Process Heaters - NG |
| 050-995-0110-0000 | 3272 | 39000601 | Industrial NG Combustion - Industrial - Inprocess Fuel - Asphalt Dryer - NG                   |
| 050-070-0110-0000 | 3599 | 39000602 | Industrial NG Combustion - Industrial - Inprocess Fuel - Cement Kiln/Dryer - NG               |
| 050-070-0110-0000 | 3272 | 39000603 | Industrial NG Combustion - Industrial - Inprocess Fuel - Lime Kiln - NG                       |
| 050-995-0110-0000 | 1455 | 39000604 | Industrial NG Combustion - Industrial - Inprocess Fuel - Kaolin Kiln - NG                     |
| 050-995-0110-0000 | 3621 | 39000605 | Industrial NG Combustion - Industrial - Inprocess Fuel - Metal Melting - NG                   |
| 050-995-0110-0000 | 3259 | 39000606 | Industrial NG Combustion - Industrial - Inprocess Fuel - Brick Kiln/Dryers - NG               |
| 050-995-0110-0000 | 3272 | 39000607 | Industrial NG Combustion - Industrial - Inprocess Fuel - Gypsum Kiln, etc NG                  |
| 050-995-0110-0000 | 3229 | 39000608 | Industrial NG Combustion - Industrial - Inprocess Fuel - Glass Furnace - NG                   |
| 050-995-0110-0000 | 2951 | 39000609 | Industrial NG Combustion - Industrial - Inprocess Fuel - Rock/Gravel Dry - NG                 |
| 050-995-0110-0000 | 2048 | 39000630 | Industrial NG Combustion - Industrial - Inprocess Fuel - Feed/Grain Dry - NG                  |
| 050-995-0110-0000 | 2099 | 39000631 | Industrial NG Combustion - Industrial - Inprocess Fuel - Food-Dry/Cook/E - NG                 |
| 050-995-0110-0000 | 2899 | 39000632 | Industrial NG Combustion - Industrial - Inprocess Fuel - Fertilizer Dry - NG                  |
| 050-995-0110-0000 | 2421 | 39000651 | Industrial NG Combustion - Industrial - Inprocess Fuel - Plywood Dryers - NG                  |
| 050-995-0110-0000 | 2421 | 39000652 | Industrial NG Combustion - Industrial - Inprocess Fuel - Pulp-Recovery Boilers - NG           |
| 050-070-0110-0000 | 3599 | 39000689 | Industrial NG Combustion - Industrial - Inprocess Fuel - Not Classified - NG                  |
| 050-070-0110-0000 | 3599 | 39000699 | Industrial NG Combustion - Industrial - Inprocess Fuel - Not Classified - NG                  |
| 050-010-0110-0000 | 3599 | 39900601 | Industrial NG Combustion - Industrial - Mis Ind-Fuel Eqpt Process Heater/Furnace - NG         |
| 050-010-0110-0000 | 3599 | 39990003 | Industrial NG Combustion - Industrial - Mis Ind-Fuel Eqpt Process Heater - NG                 |
| 130-130-0110-0000 | 3567 | 39990013 | Industrial NG Combustion - Industrial - Mis Ind-Fuel Eqpt Incinerators - NG                   |
| 130-132-0110-0000 | 2899 | 39990023 | Industrial NG Combustion - Industrial - Mis Ind-Fuel Eqpt Flares - NG                         |
| 050-012-0110-0000 | 3599 | 40201001 | Industrial NG Combustion - Surface Coating - Organic Solvent - Oven Heater - NG               |
| 130-130-0110-0000 | 3599 | 40290013 | Industrial NG Combustion - Surface Coating - Organic Solvent - Incin./Afterburner - NG        |
| 130-132-0110-0000 | 2759 | 40290023 | Industrial NG Combustion - Surface Coating - Organic Solvent - Flares - NG                    |
| 130-130-0110-0000 | 3599 | 49090013 | Industrial NG Combustion - Miscellaneous - Organic Solvent - Incinerators - NG                |
| 130-132-0110-0000 | 3559 | 49090023 | Industrial NG Combustion - Miscellaneous - Organic Solvent - Flares - NG                      |
| 050-995-0110-0000 | 2911 | 50290006 | Industrial NG Combustion - Commercl-Instutnl - Solid Waste Disposal - Aux.Fuel/No Emsns - NG  |
| 050-995-0110-0000 | 3511 | 50390006 | Industrial NG Combustion - Industrial - Solid Waste Disposal - Aux.Fuel/No Emsns - NG         |

#### Page 11 of 13

G:\HEARTs\AREA\050 - MANUFACTURING AND INDUSTRIAL\ Industrial Natural Gas Combustion\Mthd\_IndustrialNGCombustion\_SJV\_2005.doc

|      | Growth Activity Parameter by County |      |      |      |      |      |      |        |  |  |  |
|------|-------------------------------------|------|------|------|------|------|------|--------|--|--|--|
|      |                                     |      |      |      |      |      |      | Tulare |  |  |  |
| 2000 | 6.36                                | 3.40 | 0.78 | 0.91 | 2.80 | 4.92 | 6.81 | 2.61   |  |  |  |
| 2001 | 6.65                                | 3.59 | 0.8  | 0.96 | 2.90 | 5.08 | 7.00 | 2.72   |  |  |  |
| 2002 | 6.82                                | 3.72 | 0.8  | 1.00 | 2.93 | 5.15 | 7.06 | 2.77   |  |  |  |
| 2003 | 7.01                                | 3.87 | 0.81 | 1.04 | 2.96 | 5.23 | 7.13 | 2.83   |  |  |  |
| 2004 | 7.17                                | 4.01 | 0.81 | 1.08 | 2.97 | 5.29 | 7.17 | 2.88   |  |  |  |
| 2005 | 7.34                                | 4.15 | 0.81 | 1.11 | 2.98 | 5.33 | 7.21 | 2.93   |  |  |  |
| 2006 | 7.53                                | 4.32 | 0.81 | 1.16 | 2.99 | 5.40 | 7.26 | 2.98   |  |  |  |
| 2007 | 7.66                                | 4.40 | 0.82 | 1.19 | 3.01 | 5.47 | 7.33 | 3.03   |  |  |  |
| 2008 | 7.77                                | 4.47 | 0.83 | 1.21 | 3.02 | 5.51 | 7.39 | 3.07   |  |  |  |
| 2009 | 7.89                                | 4.54 | 0.83 | 1.24 | 3.04 | 5.58 | 7.46 | 3.11   |  |  |  |
| 2010 | 8.03                                | 4.63 | 0.84 | 1.27 | 3.07 | 5.65 | 7.55 | 3.16   |  |  |  |
| 2015 | 8.83                                | 5.12 | 0.90 | 1.42 | 3.25 | 6.13 | 8.13 | 3.46   |  |  |  |
| 2020 | 9.44                                | 5.49 | 0.94 | 1.54 | 3.39 | 6.49 | 8.58 | 3.68   |  |  |  |
| 2025 | 9.65                                | 5.62 | 0.95 | 1.60 | 3.41 | 6.58 | 8.71 | 3.76   |  |  |  |
| 2030 | 9.96                                | 5.81 | 0.97 | 1.67 | 3.48 | 6.75 | 8.92 | 3.88   |  |  |  |

# XIX. Appendix B. California Air Resources Board growth parameters for EIC 050-040-0110-0000.

|      | Growth Activity Parameter by County |      |      |      |      |      |      |        |  |  |  |  |
|------|-------------------------------------|------|------|------|------|------|------|--------|--|--|--|--|
|      |                                     |      |      |      |      |      |      | Tulare |  |  |  |  |
| 2000 | 6.36                                | 3.40 | 0.78 | 0.91 | 2.80 | 4.92 | 6.81 | 2.61   |  |  |  |  |
| 2001 | 6.65                                | 3.59 | 0.80 | 0.96 | 2.90 | 5.08 | 7.00 | 2.72   |  |  |  |  |
| 2002 | 6.82                                | 3.72 | 0.80 | 1.00 | 2.93 | 5.15 | 7.06 | 2.77   |  |  |  |  |
| 2003 | 7.01                                | 3.87 | 0.81 | 1.04 | 2.96 | 5.23 | 7.13 | 2.83   |  |  |  |  |
| 2004 | 7.17                                | 4.01 | 0.81 | 1.08 | 2.97 | 5.29 | 7.17 | 2.88   |  |  |  |  |
| 2005 | 7.34                                | 4.15 | 0.81 | 1.11 | 2.98 | 5.33 | 7.21 | 2.93   |  |  |  |  |
| 2006 | 7.53                                | 4.32 | 0.81 | 1.16 | 2.99 | 5.40 | 7.26 | 2.98   |  |  |  |  |
| 2007 | 7.66                                | 4.40 | 0.82 | 1.19 | 3.01 | 5.47 | 7.33 | 3.03   |  |  |  |  |
| 2008 | 7.77                                | 4.47 | 0.83 | 1.21 | 3.02 | 5.51 | 7.39 | 3.07   |  |  |  |  |
| 2009 | 7.89                                | 4.54 | 0.83 | 1.24 | 3.04 | 5.58 | 7.46 | 3.11   |  |  |  |  |
| 2010 | 8.03                                | 4.63 | 0.84 | 1.27 | 3.07 | 5.65 | 7.55 | 3.16   |  |  |  |  |
| 2015 | 8.83                                | 5.12 | 0.90 | 1.42 | 3.25 | 6.13 | 8.13 | 3.46   |  |  |  |  |
| 2020 | 9.44                                | 5.49 | 0.94 | 1.54 | 3.39 | 6.49 | 8.58 | 3.68   |  |  |  |  |
| 2025 | 9.65                                | 5.62 | 0.95 | 1.60 | 3.41 | 6.58 | 8.71 | 3.76   |  |  |  |  |
| 2030 | 9.96                                | 5.81 | 0.97 | 1.67 | 3.48 | 6.75 | 8.92 | 3.88   |  |  |  |  |

# XX. Appendix C. California Air Resources Board growth parameters for EIC 050-995-0110-0000.