Session 2

Evaluation of Costs and Benefits of Alternatives

Email questions to CCPlan@arb.ca.gov

Mechanisms in the Scoping Plan

- Scoping Plan will provide the toolbox of measures and mechanisms to achieve the 2020 goal
- ARB will design the mix of mechanisms to:
 - Achieve real emission reductions
 - Minimize cost to California’s consumers and businesses
- Mechanisms included will likely be a mix of source-specific measures and broader sector- or economy-wide mechanisms
- Market approaches could be part of either specific measures or broader market-oriented regulations

Mechanisms to be Evaluated for AB 32 Implementation

- Greenhouse gas (GHG) reductions possible from many different mechanisms:
 - Direct Regulations
 - Voluntary Actions
 - Market-Based Mechanisms
 - Cap and trade
 - Offsets
 - Other Approaches
 - Incentives
 - Feebates
 - Carbon fee
 - Intensity standards

Designing the Scoping Plan

- In adopting measures and mechanisms as part of the Scoping Plan, the Board is governed by AB 32 requirements to:
 - Be equitable, minimize costs and maximize total benefits, encourage early action
 - Avoid disproportionate impacts
 - Ensure that voluntary reductions get appropriate credit
 - Consider cost effectiveness, overall societal benefits
 - Minimize administrative burden
 - Minimize leakage
 - Consider significance of sources
Possible Use of Market Mechanisms

- Direct regulations on GHG sources required under AB 32
- ARB allowed to employ market-based compliance mechanisms
- Regulations must ensure
 - Reductions are real, permanent, quantifiable, verifiable, and enforceable
 - Reductions are in addition to any reduction that is required or would otherwise occur
 - If applicable, reduction is equivalent to direct emission reduction in timing and amount

Required Steps Prior to Inclusion of Market Mechanisms

- Prior to inclusion of market-based approaches, the Board must
 - Consider potential for cumulative and localized impacts
 - Prevent increase in criteria or toxic emissions
 - Maximize additional environmental and economic benefits

Local Impacts

- AB 32 requires consideration of localized impacts before a market system can be implemented
- While greenhouse gases are a global problem, criteria and toxic air pollutants are often emitted by the same sources
- Measures adopted under AB 32 may provide additional benefits by reducing existing public health and pollution problems

AB 32 and Non-GHG Pollutants

- AB 32 calls for ARB to avoid increasing the harm from criteria or toxic air pollutants
- AB 32 requires the program to be implemented, where possible, in a manner that enhances reductions of these pollutants
- Many measures and mechanisms will reduce both GHGs and other pollutants
Environmental Justice and Community Impacts

- ARB staff will work with the Environmental Justice Advisory Committee (EJAC) and other interested parties to ensure that our evaluation of possible local impacts adequately addresses local concerns

- Workshops will be held in communities to seek public input

Cost Effectiveness

- AB 32 calls for the maximum technologically feasible and cost-effective greenhouse gas emission reductions

- Determining cost effectiveness will require ARB to develop method for evaluating the cost of reducing emissions from different sources and with different measures

Evaluating Costs

- Evaluation will need to address
 - Costs:
 - Direct and indirect costs
 - Who bears the costs
 - Benefits
 - GHG reduction benefits
 - Other environmental and societal benefits
 - Method to attribute costs to GHG reductions v. other policy goals (e.g. criteria emission reductions)

- Different measures and mechanisms will need to be evaluated on common basis
How Cost Effectiveness Will Be Addressed

- Cost effectiveness must be evaluated in light of the entire set of measures needed to reach both the 2020 goal and much greater reductions needed in the decades beyond 2020
- The Scoping Plan will include the information needed to compare measures based on cost effectiveness
- The determination of what is cost-effective requires policy judgment and is not purely technical in nature

Determination of Cost Effectiveness

- ARB is unlikely to establish a single cost level that marks the line for cost effectiveness across all sectors and measures
- Some measures with high costs from a GHG-reduction perspective may be included in the Scoping Plan because they support other policy goals, and also reduce GHG emissions

Future Discussions of Cost-effectiveness

- ARB will further address cost effectiveness as the Scoping Plan is developed
- ARB will seek input on:
 - The technical approach to determining the cost of various reductions measures
 - How costs should be allocated when measures produce benefits beyond GHG reductions
 - The policy considerations that should inform the judgment of what is ‘cost-effective’

Economic Impact Assessment

Modeling and Analysis
Economic Assessment

- Extensive economic analysis is planned and will:
 - Build on existing information on the costs and benefits of GHG reductions measures
 - Be used to evaluate the overall economic costs and benefits of different approaches to implementing AB 32, including various mixes of regulatory and market approaches
- Analysis will be done on several levels, including:
 - Broad perspectives, e.g., sector targets vs. economy-wide targets
 - Groups of sector-specific measures similar to the CAT analysis
 - Individual measures under a more traditional regulatory process

Build on Existing Research

- Climate Action Team Report and the Macroeconomic Update
- Market Advisory Committee Report

Collaborate and Build on Ongoing Modeling Efforts

- California Public Utilities Commission with E3 Consulting
- Western Climate Initiative (WCI)

ARB Modeling

ARB
- Environmental Dynamic Revenue Assessment Model (E-DRAM)
- Energy 2020 – Developed for ARB by ICF International and Systematic Solutions, Inc. (SSI)

Collaborative Efforts
- David Roland-Holst of UC Berkeley - BEAR Model
- Economic Policy Research Institute
• Economic Analysis Stakeholder Meetings
 – First meeting: January 28, 2008
 – Tentative dates: February 29 and March 17

• E-DRAM is a computable general equilibrium (CGE) model of the California economy.

 • E-DRAM was developed by Professor Peter Berck of the University of California, Berkeley in collaboration with the Department of Finance and the Air Resources Board.

 • E-DRAM has been peer reviewed and is available for public use.

• Previous Uses of E-DRAM

 • March 2006 Climate Action Team Report and the September 2007 Macroeconomic Update

 • CEC and ARB analysis of reducing petroleum dependency (AB 2076)

 • ARB analysis of vehicle climate change standards (AB 1493)

 • ARB State Implementation Plan analysis

• Change in output
 • Change in prices
 • Change in employment
 • Change in personal income
 • Change in consumer spending
ENERGY 2020

- ENERGY 2020 is a multi-sector energy analysis system that simulates the supply, demand and price for all fuels.
- Supply side includes: electricity generation, oil extraction and refining, gas production, coal mining, combined heat and power (CHP), ethanol production and renewables.
- Demand side includes end uses for residential, commercial, industrial, transportation and other defined sectors.

ENERGY 2020 Use for Climate Policy Analysis

- Illinois – GHG Reduction
- Michigan – GHG Reduction
- Vermont – GHG and Energy Plan
- Hawaii – GHG and Oil Dependency
- Government of Ontario – Climate change options
- Environment Canada – Climate change plans
- Canadian Analysis and Modeling Group (AMG) -climate change measures and emissions trading
- Canadian National Round Table on Environment and Economy – Long-term energy and climate change strategy

ENERGY 2020 Major Model Outputs

- Fuel Usage for all fuels
- Electricity generation, capacity, prices
- Oil and gas imports and exports
- Emissions – GHG and other criteria pollutants
- Sector investment
- CO₂ price

Economic Feedback

- ENERGY 2020
 1. Energy prices
 2. Energy demand investments
 3. Energy supply investments
 4. Carbon price

- E-DRAM
 1. Sector output
 2. Personal income
 3. Employment
 4. Population
 5. Interest rates and inflation
How Will the Results from the Multiple Modeling Efforts Be Used?

- Provide assessment of the relative cost of different approaches to achieving California’s emission reduction goals
- Validate results across models or identify significant differences that warrant further analysis
- Assist in designing complementary policies

Scenarios Analysis Workshop April 4

- ARB will analyze several different broad policy approaches, such as sector-specific targets or an upstream cap and trade system
- Several scenarios of this type for evaluation are being developed now
- Preliminary modeling results for several key scenarios will be discussed at the April 4 workshop

Scenarios Analysis

- Analysis of scenarios will include:
 - GHG emission reductions
 - Overall economic and societal costs
 - Who pays for reductions
- Additional analysis will be undertaken to evaluate localized impacts and effects on criteria and toxic air pollution emissions
- Stakeholder meetings on economic analysis and mechanism design will be held to discuss the analytic effort, scenario design, and modeling results

Questions and Comments?

E-mail questions to CCPlan@arb.ca.gov