

From Wells to Burners: Methane Emissions from California Natural Gas

June 7st, 2016 Marc L. Fischer (mlfischer@lbl.gov)

Problem Overview

- Significance of Natural Gas (NG) Methane
- Bottom-up Estimates of California NG methane emissions

CALGEM-NG measurements

- Regional NG Emission Measurements for SF Bay Area
- UCD Airborne Measurements of NG Facilities
- LBNL Mobile Plume Integration (MPI) Measurements
- LBNL Residential Building and Appliance Measurements
- Summary and Recommendations

CALGEM team & collaborators

LBNL: Seongeun Jeong, Toby Walpert, Xinguag Cui, Justin Bagley, Wanyu Chang, Woody Delp, Dev Millstein
BAAQMD: Abhinav Guha, Phil Martien, David Fairley, Saffet Tanrikulu
CARB: Ying-Kuang Hsu, Mathias Falk, Abhilash Vijayan, Jorn Herner, Bart Croes, Vernon Hughes, Larry Hunsaker, Marc Vayssières, Richard Bode, Anny Huang, Joseph Fischer, Jim Narady, Webster Tassat , Mac McDougall, Steve Rider, Steven Aston, Neil Adler, and Harlan Quan
CEC: Guido Franco, Yu Hou
CIT: Sally Newman, Paul Wennberg, Christian Frankenberg
EarthNetworks: Christopher D. Sloop
Kings College London: Heather Graven, Kieran Brophy
JPL: Nick Parazoo, Riley Duren, Chip Miller

LLNL: Tom Guilderson

NASA-Ames: Laura Iraci, Matthew Johnson, Emma Yates

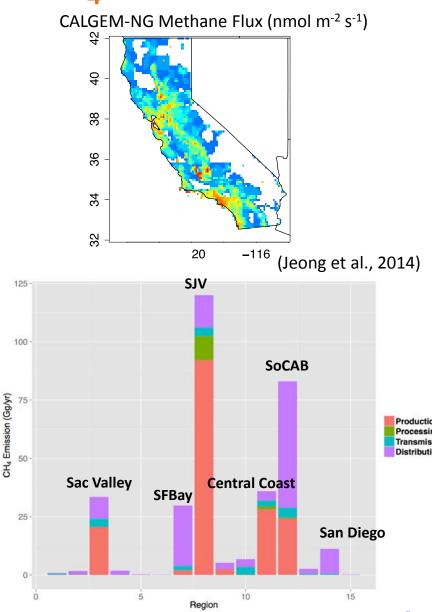
NOAA-CCG: Arlyn Andrews, Laura Bianco, Ed Dlugokencky, Scott Lehman, John Miller, Jim Wilczak, Steve Montzka, Colm Sweeney, Pieter Tans

PG&E: François Rongere, Gerry Bong

Picarro: Chris Rella

Scripps/UCSD: Ralph Keeling, Jooil Kim, Ray F. Weiss SJSU: Craig Clements, Neil Lareau, Matthew Lloyd SNL: Ray Bamba, Hope Michelson, Brian LaFranci UC Berkeley: Allen Goldstein

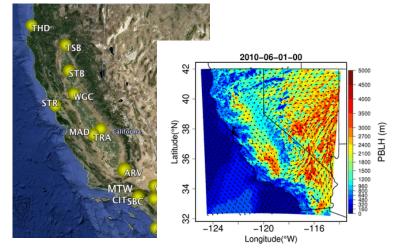
UCSB: Ira Leifer UC Davis: Stephen Conley, Ian Faloona, Shobhit Mehrorta UC Irvine: Don Blake, Xiaomei Xu UCR: Jingsong Zhang CALGEM natural gas CH₄ research was predominantly supported by the California Energy Commission though grants to LBNL and UCD ²


Problem Overview

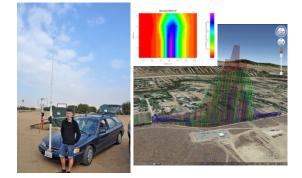
- Natural gas provides ~40% of California fossil fuel energy
- Methane is a potent short lived climate pollutant
 - 3% of well-to-burner NG leaked as methane approximately doubles climate forcing of remaining 97% gas combusted to CO₂ on 20 year timescale
- CA and US now moving to control CH₄ emissions
 - 10-20% of California's total methane emissions likely from NG
 - Entire production to consumption chain susceptible to emissions
 - Measurements now fill some gaps in understanding across NG infrastructure

Bottom-up Natural Gas CH₄ Emissions

- Map emissions w/ 2010/2011 US-EPA emission factors and CA specific GIS activity data
 - Production: Dry gas and petroleum wells
 - Transmission, compression, and storage
 - Distribution & consumption
- Estimated NG emissions ~ 330 Gg CH4 yr⁻¹ (-20% to + 30% @ 95%)
 - Top-down studies in SoCAB suggest higher NG emissions (Peischl et al., 2013, Wunch et al., 2016)
 - 2016 US-EPA estimates increase production but decrease distribution emissions
 - NG is still small fraction of total California CH₄ emissions



CALGEM-NG CH₄ Measurements


- Regional Emissions
 - Tower measurements
 - Atmospheric Inversions
- Large Facilities
 - Aircraft Observations
- Localized Sources
 - Mobile Plume Integration
 - Building Studies

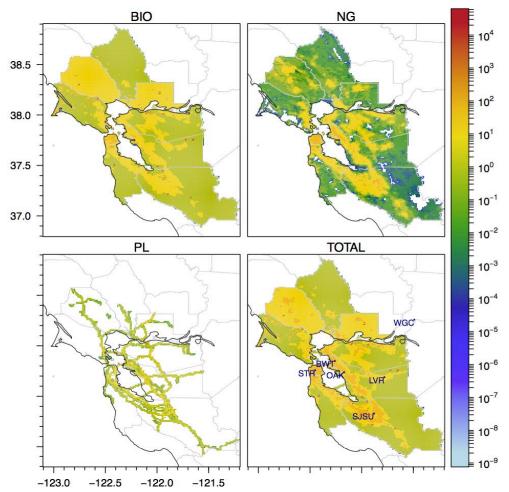
Collaborative tower measurements Atmospheric Regional Inverse Modeling

LBNL Plume Integration

UC Davis Mass-balance UC Irvine VOC LBNL Building Science

Regional NG Emission Estimate for San Francisco Bay Area

- Oct-Dec, 2015 sampling at six collaborative sites
 - CH₄, ethane, pentane, toluene, CO, and other VOC
 - Livermore hourly CH4 & VOC
 - Daily flask sampling at other sites analyzed at NOAA and UCI
- Fossil VOC:CH₄ compositions adopted from PG&E gas reporting, airborne measurements, and previous mobile source studies (e.g., Kirchstetter et al., 1996)


SFBA Biological and Fossil CH₄ Sources

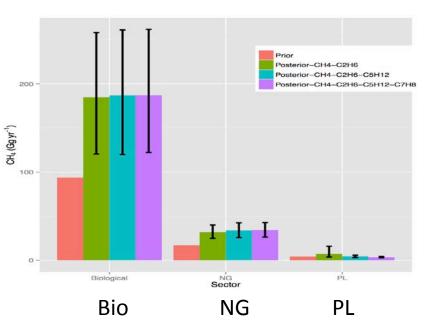
- Biological sources
 - Landfill 51%

ERKELEY LAE

- Livestock 15%
- Wastewater 6%
- Wetland 3%
- Fossil sources
 - NG distribution 15% (0.2% NG consumption)
 - Mobil and refining 4%

SF Bay CH4 Emissions at 1 km

Sector Specific SFBay CH₄ Inversion

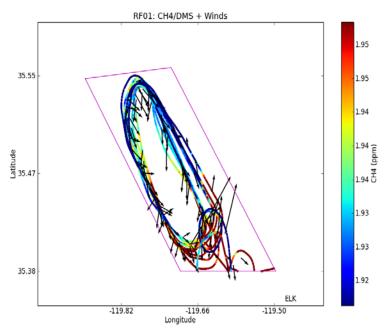

- Inversion of biological, NG, and petroleum CH₄ emissions constrained by CH₄ and VOCs
- Hirarchical Bayesian estimates optimize background offsets, VOC source compositions, and emission scaling factors

Preliminary results:

- 1) Biological CH₄ dominates
- NG emissions higher than prior at 0.3-0.5% SFBA NG consumption (Jeong et al., in prep)
- Approach amenable to sustained observations in other locations

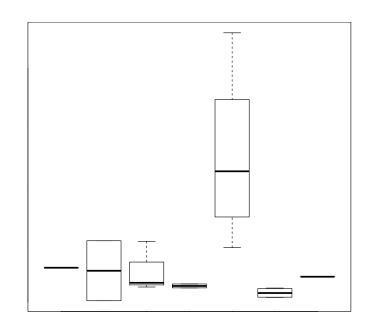
 $\begin{bmatrix} C_{CH_4} - C_{bg}^* \\ C_{C_2H_6} - C_{bg}^* \\ C_{iC_5H_{12}} - C_{bg}^* \\ C_{nC_5H_{12}} - C_{bg}^* \\ C_{C_7H_8} - C_{bg}^* \end{bmatrix} = \begin{bmatrix} FE_{S\setminus NG_{PL}} & FE_{NG} & FE_{PL} \\ \mathbf{0} & FE_{NG} f_{C_2H_{6NG}}^* & FE_{PL} f_{C_2H_{6PL}}^* \\ \mathbf{0} & \mathbf{0} & FE_{PL} f_{iC_5H_{12PL}}^* \\ \mathbf{0} & \mathbf{0} & FE_{PL} f_{iC_5H_{12PL}}^* \\ \mathbf{0} & \mathbf{0} & FE_{PL} f_{iC_5H_{12PL}}^* \\ \mathbf{0} & \mathbf{0} & FE_{PL} f_{C_7H_{8PL}}^* \end{bmatrix} \begin{bmatrix} \lambda_{S\setminus NG_{PL}} \\ \lambda_{NG} \\ \lambda_{PL} \end{bmatrix}$

Posterior CH₄ by Sector



Facility Specific Emissions San Joaquin Valley Production

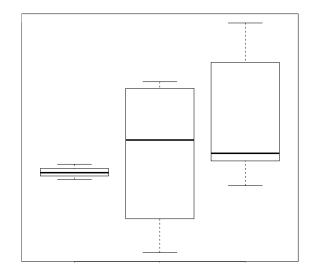
- UCD Airborne mass balance measurements
- Example: April, 2014 Belridge South petroleum production field w/ steam injection
 - Clear downwind enhancements of CH₄ and ethane
- Emissions estimated from mass balance flight 1900 +/- 700 kg CH₄ hr⁻¹ (17 +/- 6 Gg CH₄ yr⁻¹)
 - Bottom-up 15 20 Gg CH₄ yr⁻¹
 - Collaborative observations of Kern River/Front fields show emissions varied with well completion (Leifer et al., in prep)



Facility Level Emissions: Natural Gas Storage

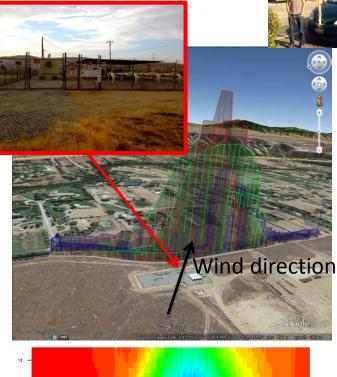
- UCD Airborne mass balance measurements
 - Four sites observed 3-8 times from June, 2014 – May, 2016 (+ four others recently)
 - Emissions vary from ND to > 400 kg CH₄ hr⁻¹
 - Median emissions ~ 1 2 x annual voluntary reporting
 - C₂H₆:CH₄ ~ 5% by vol., consistent w/ NG
 - Single point failures carry high risk: Oct,2015-Feb, 2016 Aliso Canyon well failure ~ 30% annual total CA fossil CH₄ emissions

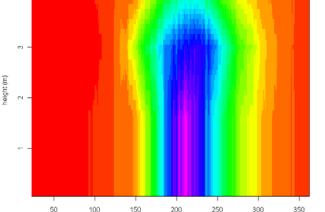
(Mehrota et. al., in prep)



Facility Level Emissions: Petroleum Refining

- UCD Airborne mass balance measurements
 - Three refineries observed 3-5 times from Feb, 2015 – May, 2016
 - Emissions varied by site and date
 ~ 30 700 kg CH₄ hr⁻¹
 - Median emissions exceed annual emissions (4-25 x) reported to US-EPA
 - C2H6:CH₄ 6-10% by vol.




(Mehrota et. al., in prep)

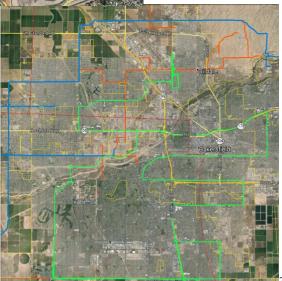
Localized Source Emissions LBNL Mobile Plume Integration (MPI)

- Cross-wind integral of CH₄ enhancement flux quantifies localized plume emission
 - Sample inlets can be set to 4-8 m above ground
 - Multi-analyzer system w/ ¹³CH₄ allows NG attribution for strong plumes
 - Anemometry of wind velocity
 - Tests at LBNL and local utilities show 30% accuracy with 3 passes with steady winds & small obstructions

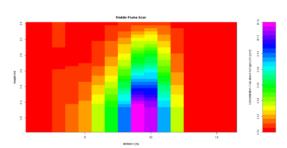
distance (m)

4 m 2 m 1 m

LBNL MP


Localized Plume Measurements: Bakersfield Distribution & Consumption

- Survey 80km of Bakersfield public streets
- Detect 20 large (~ 1 ppm) leaks above background
- 40% of total emissions found within 0.5 km of large distribution pipes
- Plume integrations yield total emissions of 6.4 kg CH₄ hr⁻¹
- Scaling by area suggests total emissions ~ 90 kg CH₄ hr⁻¹
- Comparing with consumption suggests ~ 0.3% distribution leakage – similar to bottom up


CH₄ enhancements (green), distribution (orange) and transmission (blue) pipelines

Localized Plumes: Sacramento Delta Gas Wells

- CA Dept. Cons. well map data
- Initial inspection of 13 capped or idle wells
 - Quantify one plume 5 +/- 1.7 g CH⁴ hr⁻¹ (5 passes)
 - Detected three plumes 1.6-14 g CH₄ hr⁻¹ (1pass each)
 - Non-detect downwind at 2 sites
 - 7 sites did not allow downwind access

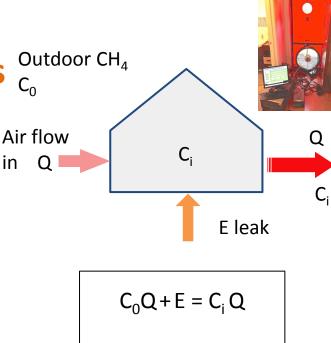
Methane Plume

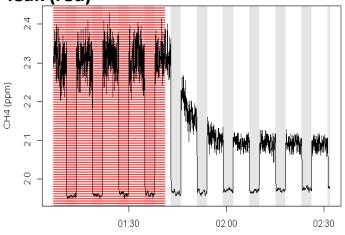
Capped well

Localized Sources:

East Bay Distribution & Consumption

- Small (<< 1 ppm) CH₄ plumes observed in SF East Bay
- Individual plumes emit ~ 0.07 0.3 g CH₄ hr⁻¹
- Emissions largest on commercial avenues w/ food service
- Total emissions ~ 5 g CH₄ hr⁻¹ over 30km route

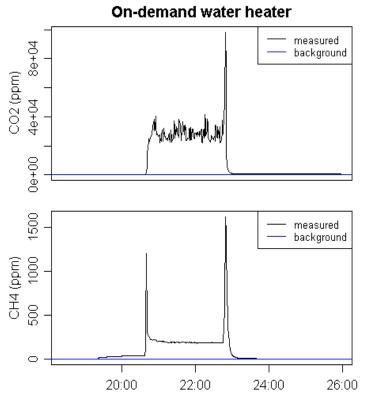



Whole Building Measurements: Quiescent Residential Emissions

- Measurements
 - Depressurize house producing controlled inflow of outdoor air
 - Measure CH₄ enhancement relative to outdoor air
 - ¹³CH₄/¹²CH₄ identifies NG vs. biological
- Results from 10 SF Bay homes
 - Median leak rate 0.2 g CH₄ hr⁻¹ (0.1-0.4 g CH⁴ hr⁻¹ lower-upper quartiles)
 - Equivalent to ~ 0.2% of house consumption
- CEC project underway to measure 50-75 homes across CA housing stock

Measured indoor (white) and outdoor (grey) methane during calibrated indoor leak (red)

 $E = Q (C_i - C_0)$



Combustion Appliance Emissions

- Emission Ratio Method
 - Emission = product of CH₄:CO₂ enhancements * measured NG usage
- Tank-less water heaters
 - Test of three tank-less water heaters yield emissions of 3 - 12 g CH⁴ hr⁻¹

(1 hr operation ~ equal 1 day of quiescent house leakage)

- Clothes Driers and Gas Cooktop
 - One gas range emitted ~ 2 g CH⁴ hr⁻¹ in continuous operation
 - Two clothes driers emitted ~ 0.4 g CH⁴ hr⁻¹ emissions in continuous operation

- CH₄ emissions present across all NG subsectors from wells to burners
- Regional inversions suggest emissions from SFBA distribution ~ 0.3-0.5% of NG consumption
- 3. Production field measurements (limited but) ~ consistent with bottom-up but expect variability (particularly well completion)
- Gas storage facility emissions variable but ~ consistent with reporting
- 5. Petroleum refining emissions appear larger (4-25 x) than reporting
- Localized emissions in distribution & consumption sectors measurable and appear to ~ scale with gas throughput

Recommendations

- 1. Daily multi-species tower measurements needed for inversionbase verification of regional integrated NG CH₄ emissions
- 2. Plume imaging from ground, air, and space needed to identify local emission hotspots to guide site specific quantification and mitigation
- Mass balance flights and mobile plume integration needed for quantitative assessment of facility and localized source emissions
- Continuous (open-path or multi-point CH₄) sensing valuable for ongoing leak detection at high volume/flow facilities
- Energy efficiency programs would benefit from added leak detection and repair procedures and revised standards guidance for low-emission appliances