California ARB’s QM for CCS, and Cap-and-Trade vs. LCFS

Workshop May 8, 2017
Sacramento
Jeffrey D. Brown
Stanford Business School &
Steyer-Taylor Center for Energy Policy and Finance*

*Comments are those of the author and do not purport to represent views of Stanford University.
Main Points

• Staff’s Concept Paper (p. 3/9) states “Under the LCFS, staff plans to draw a system boundary that includes the substantial sources of emissions for CCS projects, essentially, capture, compression, transport, and injection.” As explained on May 8, 2017 by staff, this appears to track the CO2 emissions associated with moving/injecting CO2. It does not specifically address the policy issue of, “In which industry should we credit the sequestration of the CO2 itself?”—a question critical to successful adoption of CCS.

• More pointedly, where should credit be taken for CO2 emissions captured from a non-crude oil production process solely for the purpose of supplying CO2 as a production input to CO2-EOR? Based on typical CO2 flood data, using CO2 in EOR will ultimately cause sequestration of 0.36-0.45 MT/mbbl oil produced.

• California has at least three different CO2 emissions valuations systems operating mostly in independent silos: LCFS, RPS, AB32 Cap-and-Trade. CCS activities, without a change in LCFS rules, fall between the cracks—not mandated by any rule, and if used, generating “allowances” for industries that don’t particularly need such allowances.

• CCS has the potential to avoid tens of millions of tons of CO2 emissions generated in non-oil industries* for which there is no other large scale abatement mechanism other than CCS. In most cases the particular non-oil emitters are in no way compelled, and not meaningfully incentivized, to install CO2 capture by federal or state regulations.

• Therefore, unless LCFS credits can be generated by capture outside the oilfield for the purpose of generating low carbon intensity crude at the oil field, CO2 capture investments are unlikely to be made. Commercial and physical boundaries must be crossed.

• CO2 purchased by the oil industry that would otherwise be emitted in non-oil industries should be accounted for as an input in the fuel “life cycle analysis”, therefore having the effect of lowering the carbon intensity of oil produced.

*Or at oilfields, but with emissions apparently allocated to non-crude oil generation activities such as supplying electricity to the CAISO grid.
California’s Three Main CO2 Valuation/Regulation Systems

Three Systems, Three Costs of Carbon

- **CO2 avoided using mandated “renewables” to, turn off gas power**: $150
- **CO2 avoided or captured by non-mandated technologies like CCS**: $12
- **CO2 avoided by using ethanol, etc.**: $85

$/MT Avoided

- **RPS Mandate**
- **Cap&Trade (Safety Net)**
- **LCFS Mandate**
Adding CCS is a Big Risky Step, vs. Incremental per C&T

• AB32 and Cap-and-Trade ask for gradual, incremental declines of 3% per year
 • An emitter of 1 million TPY, at current allowance prices, would be facing an allowance purchase budget rising by $360,000 a year to buy allowances

• Implementing 90% CO2 capture for a major industry (like gas power plant), would be an investment of ~$500 million, a financing bill of ~$60 million per year
Millions of Tons of CO2 Could be Missed

(Emitters either near but not at oilfields, or located at oilfields but major portion of CO2 emissions likely “not allocable to fuel life cycle” per LCFS innovative crude definitions)

<table>
<thead>
<tr>
<th>Facility</th>
<th>Emitter Covered MT (000s)</th>
<th>City</th>
<th>Industry</th>
<th>Issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sycamore Co-gen*</td>
<td>837</td>
<td>Bakersfield</td>
<td>Fossil Power Gen</td>
<td>~60% allocable to electric power (EPA 2012) sold to grid</td>
</tr>
<tr>
<td>Kern River Co-gen*</td>
<td>475</td>
<td>Bakersfield</td>
<td>Fossil Power Gen</td>
<td>~62% allocable to electric power (EPA 2012) sold to grid</td>
</tr>
<tr>
<td>Calpine Pastoria</td>
<td>1,778</td>
<td>Lebec</td>
<td>Fossil Power Gen</td>
<td>No association with oilfield</td>
</tr>
<tr>
<td>National Cement</td>
<td>681</td>
<td>Lebec</td>
<td>Cement</td>
<td>No association with oilfield</td>
</tr>
<tr>
<td>High Desert Power</td>
<td>1,442</td>
<td>Victorville</td>
<td>Fossil Power Gen</td>
<td>No association with oilfield</td>
</tr>
<tr>
<td>Cal Resources 35R Gas Processing Plant and Power Plants*</td>
<td>2,029</td>
<td>Tupman</td>
<td>Fossil Power Gen and Natural Gas Processing Plant</td>
<td>Two power plants (45MW & 550MW) with HRSG steam partially used for natural gas processing—not for oil; the 550MW plant supply of steam for gas processing ~2% of energy output; CRC electric load per CAISO (2014) is 90-200MW.</td>
</tr>
<tr>
<td>CalPortland Mojave</td>
<td>1,033</td>
<td>Mojave</td>
<td>Cement</td>
<td>No association with oilfield</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8,311*</td>
</tr>
</tbody>
</table>

*Total “Emitter Covered Emissions” per ARB 2015. We understand that some minority portions of Sycamore, Kern or 35R power plant emissions might be treated as relating to ‘eligible activities’ if CO2 were captured.
Boundary Crossing is Inevitable and Beneficial

Industry won’t capture unless oilfield will enter into long-term contract to accept the CO2.

Industry can’t afford to capture unless the oilfield can pay a high, stable price for the CO2.

Oilfield won’t start a CO2-flood unless it has a solid long-term source of CO2.

Oilfield can’t pay a high price for CO2 unless its QM-verified sequestration will earn monetizable credit value.
LCFS Has Sought to Define Fuel “Life-Cycle” in the Past

• Some parties have thought it is advantageous to define “fuel life-cycle” narrowly, putting a geographic border around an economic and industrial phenomenon.

• That led to current rule that to be an “innovative method” then “Carbon capture must take place onsite at the crude oil production facilities.” (LCFS Final Order p. 99/148)

• This restriction does not make sense if a main goal of LCFS is to encourage innovations that reduce carbon intensity of petroleum-derived liquid transportation fuels. Oilfields inevitably purchase required inputs from outside the physical boundaries of a field. Those inputs could increase, decrease, or leave unaffected the carbon footprint of produced crudes:
 • A carbon intensive input for oil production (coal powered electricity to drive pumps) \(\rightarrow \) should raise CI
 • A carbon neutral input (nitrogen gas to raise well pressure for EOR) \(\rightarrow \) ~neutral
 • A carbon negative input (CO2 that would otherwise be emitted in a non-oil industry) \(\rightarrow \) should decrease CI

• Where the emissions take place or are avoided shouldn’t matter as long as the purchased input is indispensable to oil production.
Electricity from Natural Gas with CO2 Capture for Enhanced Oil Recovery
Emission accounting under Cap- & -Trade and LCFS

California Council on Science and Technology January 2015

- This paper makes a strong argument that if a non-oilfield facility captures CO2 and delivers the CO2 to an oilfield for CO2-EOR:
 - The capturing facility should be able to treat the CO2 as not emitted for purposes of calculating allowances it needs for the year; AND
 - The injecting oilfield should also be able to use the CO2 sequestered (subject to MVR) as a reduction of CI (or to generate an LCFS credit for sale to a “regulated party”) in its life cycle analysis for the LCFS