Proposed Re-Adoption of the Low Carbon Fuel Standard

February 19, 2015
Overview of Presentation

• Background and Current Status
• Proposed Regulation
• Environmental and Economic Impacts
• Focus of 15-Day Changes
• Timeline
LCFS History

• Original adoption in 2009, amended in 2011
• Goal: Reduce carbon intensity (CI) of transportation fuel pool by at least 10% by 2020
• Expected benefits:
 – Complement other measures to reduce greenhouse gases (GHG) emissions to 1990 levels by 2020
 – Transform and diversify fuel pool and reduce petroleum dependency
 – Reduce emissions of other air pollutants
LCFS is Part of a Portfolio of GHG Policies

• Transportation sector responsible for:
 – 40% of GHG emissions
 – 80% NOx emissions
 – 95% PM emissions

• LCFS works with the following programs to reduce transportation GHG emissions:
 – Cap-and-Trade Program
 – Advanced Clean Car Program
 – SB 375

• Key program to achieve Governor’s petroleum reduction goal by 2030
Others are Following California: Pacific Coast Collaborative Update

Toward an integrated West Coast market for low-carbon fuels

- **CA and BC**: Program in place
- **WA**: Gov. Inslee’s EO 14-04
- **OR**: Legislation pending to remove 2015 sunset
- Recent ICCT research finds that the clean fuel goals of all jurisdictions achievable simultaneously

Basic LCFS Requirements

- Sets annual carbon intensity (CI) standards for gasoline, diesel, and the fuels that replace them.
- CI is the measure of GHG emissions associated with producing and consuming a fuel, which is measured in grams of carbon dioxide equivalent per megajoule (gCO$_2$e/MJ).
- CI based on complete lifecycle analysis.
Declining Carbon Intensity Curve: Concept

Fuels above standard generate deficits

Fuels below standard generate credits

February 19, 2015
The California LCFS is Working

• Low carbon fuel use is increasing, crude CI remains stable
• Regulated parties are engaged in transactions in the credit market
• Credits have exceeded deficits in all quarters and a significant credit bank has been built

Fig. 1. Total Credits and Deficits (MT) for All Fuels Reported, Q1 2011 - Q3 2014
Growing Low Carbon Fuels Presence in California
Fuel Diversity Increasing: 2011 vs. 2014

Total Number of Credits in 2011 = 1.31 MMT

Total Number of Credits in 2014 = 3.04 MMT

* Source of LCFS Credits in 2011 (in MMTs)
 - Refinery CI Reductions, 0.0
 - Renewable and conv. NG, 0.2
 - Renewable Diesel, 0.0
 - Biodiesel, 0.1
 - Cell. EtOH/Ren. Gasoline, 0.0
 - Sugar Based Ethanol, 0.1
 - Corn Based EtOH, 1.0

* Source of LCFS Credits in 2014 (in MMTs)*
 - Corn Based EtOH, 1.5
 - Renewables and conv. NG, 0.3
 - Renewable Diesel, 0.7
 - Biodiesel, 0.5
 - Cell. EtOH/Ren. Gasoline, 0.0
 - Sugar Based Ethanol, 0.0

* Through first 3 Quarters of 2014*
Legal Challenges Created Uncertainty for Low Carbon Fuel Investment

• **Federal: 9th Circuit Court of Appeals**
 - Rejected several constitutional claims
 - Ruled in favor of ARB

• **State: Court of Appeal**
 - Found procedural issues with CEQA and APA
 - Rejected plaintiff’s request to strike down LCFS
 - Allowed ARB to enforce 1 percent reduction in CI from LCFS

February 19, 2015
Staff developed the proposed rulemaking package to:

- Address the court’s concerns about the original biodiesel environmental analysis through the Alternative Diesel Fuel (ADF) rule and the new draft environmental analysis
- Clarify and enhance the regulation
- Incorporate Board’s direction, stakeholder input, and lessons learned from five years of implementation
- Incorporate latest science and technical knowledge
- Provide greater certainty
Public Process

• Initiated re-adoption with March 2014 Concept Paper
• 5 overview workshops
• 15 topic-specific workshops
• External peer review of staff’s methodology in calculating CI values
 – Peer review process will be completed before second Board Hearing
• 2 advisory panel meetings in 2014
Proposed Regulation
Summary of Re-Adoption

<table>
<thead>
<tr>
<th>Core Concepts Remain Unchanged</th>
<th>Key Areas of Proposed Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Use of lifecycle analysis including indirect land use change (ILUC) effects</td>
<td>• CI calculation tools updated using latest science</td>
</tr>
<tr>
<td>• Declining carbon intensity (CI) targets through 2020</td>
<td>• 2016-2020 targets adjusted</td>
</tr>
<tr>
<td>• Credit generation and trading</td>
<td>• Adding additional cost containment</td>
</tr>
<tr>
<td>• Quarterly and annual reporting requirements</td>
<td>• Streamlining implementation</td>
</tr>
</tbody>
</table>

February 19, 2015
Proposed Compliance Curve Adjustments

- Retain requirement to reduce average carbon intensity 10% by 2020
- Modify interim (2016-2019) requirements to address delayed investment due to legal challenges

<table>
<thead>
<tr>
<th>Year</th>
<th>Current Reduction Percent</th>
<th>Proposed Reduction Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>3.5 percent</td>
<td>2.0 percent</td>
</tr>
<tr>
<td>2017</td>
<td>5.0 percent</td>
<td>3.5 percent</td>
</tr>
<tr>
<td>2018</td>
<td>6.5 percent</td>
<td>5.0 percent</td>
</tr>
<tr>
<td>2019</td>
<td>8.0 percent</td>
<td>7.5 percent</td>
</tr>
<tr>
<td>2020 onwards</td>
<td>10.0 percent</td>
<td>10.0 percent</td>
</tr>
</tbody>
</table>
Sources of Credits:
2014 vs. 2020 Illustrative Scenario

Total Number of Credits in 2014 = 3.04 MMT

- Corn Based EtOH, 1.5
- Renewable Diesel, 0.7
- Biodiesel, 0.5
- Cell. EtOH/Ren. Gasoline, 0.0
- Sugar Based Ethanol, 0.0
- Refinery CI Reductions, 0.0
- Renewable and conv. NG, 0.0
- Elec. and H2, 0.1

Total Number of Credits in 2020 = 20.30 MMT

- Corn Based EtOH, 1.6
- Sugar Based Ethanol, 2.2
- Cell. EtOH/Ren. Gasoline, 0.6
- Biodiesel, 1.9
- Renewable Diesel, 3.0
- Banked Credits, 6.3
- Elec. and H2, 1.5
- Refinery CI Reductions, 1.1
- Renewable and conv. NG, 2.2

By 2020 we expect strong contributions from a balanced portfolio of low carbon fuels

* Through first 3 Quarters of 2014
All tools were updated to provide an updated assessment of lifecycle CI for all fuels

Direct CI tools
- GREET: Direct carbon intensity of fuel production and use
- OPGEE: Direct carbon intensity of crude production and transport to the refinery

Indirect CI tools
- GTAP: Indirect land use change
- AEZ-EF (new): More accurately matches land conversions estimated by the GTAP model with corresponding carbon releases from soil and biomass
CI Values for Gasoline Substitutes

Representative Fuels used as Substitutes for Gasoline in Illustrative Scenario

<table>
<thead>
<tr>
<th></th>
<th>2014</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARBOB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugarcane Ethanol</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>Corn Ethanol</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>California Electricity</td>
<td>60</td>
<td>40</td>
</tr>
</tbody>
</table>

Values subject to update through the 15-day change process

February 19, 2015
CI Values for Diesel Substitutes

Representative Fuels used as Substitutes for Diesel in Illustrative Scenario

Values subject to update through the 15-day change process

February 19, 2015
Streamlining Fuel Pathway Process

- 233 unique CI pathways currently available
- Pathway approval process is time and resource intensive
- Proposed fix: two-tiered system focused on next-generation fuels
- Conventionally produced first-generation fuels use a simplified GREET-based calculator
- Next-generation fuels select one of following methods:
 - Staff-developed reference pathways (lookup table)
 - Adjust existing pathway to create a new producer-specific pathway
 - Submit a novel producer-specific pathway
Current Cost Containment Features

- **Credit Trading**
 - 530 credit transactions from 2012 through November 2014
 - 2.7 MMT credits traded

- Credits fungible between gasoline and diesel pools

- No expiration of credits

- Voluntary Opt-In provision

- Carry-back provision

- Banking of Credits
Credit Banking Provides Flexibility

Existing vs. Proposed Standards and Annual Fuel Carbon Intensity

- Initial Compliance Curve (Pre Litigation)
- Historic Compliance Curve
- Historic % CI Reduction
- % CI Reduction in Illustrative Scenario
- Proposed Compliance Curve

Example uses carbon Intensities based on composite of gasoline and diesel fuels

Credit bank allows time for low carbon fuel investment to accelerate

Significant bank of credits built up

Future adjustments needed to address Governor’s post-2020 petroleum reduction goals

February 19, 2015
New Credit Clearance Market

• Year-End Credit Clearance Market will prevent price spikes in the unlikely case of credit shortages

• Defer deficits if pro-rata share of credits made available are purchased

• Price cap in 2016: $200/MTCO$_2$e (adjusted for inflation in future years)

• Compliance debt carried over is assessed a 5% annual interest rate

• All deferred deficits must be repaid within 5 years
Credit for GHG Emissions Reductions at Refineries

• All refiners are eligible

• Projects must:
 – Result in CI reduction of 0.1 gCO$_2$e/MJ or more for CARBOB or CARB diesel
 – Involve capital investments or produce CARBOB/diesel fuel partially derived from renewable feedstocks
 – Apply for permit to construct in 2015 or later

• Projects cannot increase criteria or toxic emissions

• Examples: solar steam generation or biogas to hydrogen
Refinements to Support Innovative Technologies for Crude Oil Production

• CI credit for lower emission crude production for producers:
 – Must reduce annual emissions by more than 5,000 MTCO2e or reduce CI by 0.1 g/MJ

• Simplified credit calculations for solar-based steam generation

• Added solar and wind electrical power generation and solar heat generation

• Treatment of carbon capture and sequestration aligned under LCFS and Cap & Trade
Low-Complexity/Low-Energy-Use Refinery

• A Low-Complexity/Low-Energy-Use refinery would be defined as having
 – A modified Nelson Complexity score of 5 or less
 – Annual energy usage of 5 million MMBtu or less

• Proposed treatment for a LC/LEU refinery:
 – Credit for refining-step CI (5 gCO$_2$e/MJ for both CARBOB and CARB Diesel)
 – One-time opportunity to have crude oil incremental deficit calculated on a refinery-specific basis
Refined Electricity Provisions

• Add electric transit systems and electric forklifts as eligible to generate credits

• Remove direct-metering requirement and allow estimation for electric vehicle charging

• Specific vehicle efficiency values for electric fixed guideway, buses, forklifts, and trucks
Enhanced Enforcement Provisions

• Jurisdiction clarified to include opt-in, registered brokers and entities applying for fuel pathway certification

• Clarified Executive Officer authority to suspend, revoke, or restrict an account when violations have occurred/being investigated

• Defined a “per-deficit” violation with a penalty up to $1,000
Environmental and Economic Impacts
One Draft Environmental Analysis was prepared for both Proposed LCFS & ADF Regulations.

Existing regulatory and environmental setting in 2014 is used as baseline for the analysis.
Environmental Analysis Results: Benefits

Beneficial to greenhouse gases, air quality and energy

- Over 60 MMTCO$_2$e GHG emissions reductions from transportation fuels in CA from 2016 through 2020

- Reduce diesel related PM$_{2.5}$ emissions from transportation fuels by about 1,200 tons from 2016 through 2020
• Potentially significant impacts to certain resources
 – Some related to long-term changes in fuel production and supply
 – Others shorter in duration related to construction of new facilities

• Significant cumulative impacts also identified for some resources
Economic Impacts: Background

- Analysis jointly considered re-adoption of LCFS and adoption of ADF regulations

- Employed conservative framework:
 - Assumes all costs to the regulated parties are passed on to customers
 - Does not include climate protection benefits, health benefits, benefits due to reduced oil dependence
 - Does not account for interactions with other policies
 - Does not assume any reduced cost due to innovation
Economic Impacts: Macroeconomic Impacts

- Modeled using the Regional Economic Models, Inc. (REMI) tool

- Together LCFS and ADF:
 - Have a very small impact on CA’s Gross State Product—reducing rate of increase by less than 0.06% annually
 - Have very small impacts on employment, reducing annual growth rates by less than 0.07%

- Under conservative assumptions, impacts are very small on California’s large, diverse economy
Economic Impacts: Shift in Fuel Producer Costs

- LCFS credit value reduces the costs to producers of low carbon fuels
- Covering LCFS debits slightly increases the cost to producers of traditional fossil fuels

Value Added from LCFS Credits (2020)

- Low carbon fuel producers benefit
- High carbon fuel producers’ costs increase slightly
February: First Board Hearing on proposed LCFS re-adoption and ADF adoption

Summer: Second Board Hearing

January: Proposed implementation of the improved LCFS

2015

Work with stakeholders, incorporate board direction, finalize peer review of CI tools

15-Day Changes

2016

Adjust LRT and prepare for other process changes
Areas for Potential 15-Day Changes

• Finalize natural gas vehicle carbon intensity and other GREET model adjustments
• Clarify refinery investment provisions
• Direct inclusion of indirect land use change CI values in the regulation
• Revise the carry back credit provision
• Clarify timeline for evaluating pathway applications
• Revise the reporting parameters for electricity
• Schedule program review for 2017
Next Steps

• Complete the environmental review process
 – Prepare written responses to environmental comments
 – Update the analysis, if needed

• Complete external peer review of CI tools

• Work with stakeholders on 15-Day Changes

• Return to the Board for consideration of rule adoption
Background Slides
Low-Complexity/Low-Energy-Use Refinery

Modified Nelson Complexity: Less than or equal to 5
Total Annual Energy Use: Less than or equal to 5 million MMBtu per year

February 19, 2015