Status Update: Zero Emission Vehicle Infrastructure

September 2012
Driving ZEVs to California

• ZEV Regulation
• Clean Vehicle Rebate Program
• Infrastructure
• ZEV Executive Order and Action Plan
• Partner presentations
Driving ZEVs to California

- ZEV Amendments adopted January 2012
 - Finalized
 - EPA Waiver Hearing

Projected: Plug-in Hybrids

Projected: ZEVs

15.4% of Annual Sales in 2025

Graph shows annual ZEVs from 2015 to 2025 with projections for plug-in hybrids and ZEVs.
ZEVs Coming to Market

Plug-In Hybrids

Fuel Cell Vehicles

Battery Electric Vehicles
Clean Vehicle Rebates

• ZEVs - $2,500 per car, PHEVs - $1,500 per car
• Over 9,000 vehicles have received rebates
 – 5,800 BEVs and FCVs
 – 3,200 PHEVs
• Nearly $25 million allocated
• $2,500 per ZEV
• $2,000 per NEV
• $1,500 per plug in hybrid
ZEV Infrastructure Considerations

• Accessible
• Affordable
• Easy to establish
• Reliable
• Environmentally beneficial
ZEV Executive Order

• Signed March 23, 2012
• Support rapid commercialization of ZEVs
 – Infrastructure and community readiness
 • The state’s infrastructure will support 1 million ZEVs by 2020
 – Consumer awareness
 – State fleet transformation
 • 10 percent of fleet purchases by 2015 and 25 by 2020
 – Economic development and investment
• 1.5 Million ZEVs by 2025
Today’s Presentations

- Plug-in Electric Vehicle Infrastructure: Current and Future Plans in California
 – Diane Wittenberg, Plug-In Electric Vehicle Collaborative

- FCEVs and Hydrogen in California: Preparing for Market Launch
 – Catherine Dunwoody, California Fuel Cell Partnership

- California Investments in ZEV Infrastructure
 – Pat Perez, California Energy Commission
Plug-in Electric Vehicle Infrastructure: Current and Future Plans in California

Diane Wittenberg, Executive Director, PEVC
ARB Board Presentation
September 20, 2012
2012 Membership

State Government
- ARB
- CEC
- CPUC
- Legislature members
- Governor’s office

Automakers
- BMW
- CODA
- Ford
- GM
- Honda
- Nissan
- Tesla
- Toyota

Regional Government
- CAPCOA, Sonoma
- BAAQMD
- SCAQMD

Utilities
- LADWP
- PG&E
- SCE
- SDG&E
- SMUD

Consulting / Research
- CALSTART
- EPRI
- ICCT
- UC Davis

Advocacy Organizations
- American Lung A.
- CalETC
- CEERT
- NRDC
- Plug In America
- UCS

Network Providers
- AeroVironment
- Better Place
- Clean Fuel Connection
- Coulomb
- ECOtality
- Greenlots
- NRG
The PEV Collaborative

A California public-private partnership focused on addressing challenges in the PEV market in a multi-stakeholder forum
PEV Sales in the U.S. (2011-2012)

~17,000 PEV cumulative sales in California to date (~40% of national total)

Source: HybridCars.com
Levels of Charging Infrastructure

- **Level 1**: 120V circuit
- **Level 2**: 240V circuit
- **DC Fast Charge**: 400+ volts
- **Battery switch**: Replace empty with charged battery
Charging Infrastructure Location Goals

3: Public

2: Work

1: Home
Unresolved Market Issues

- What influences public charging business models?
- How does workplace charging fit in?
- What is the best balance between charge levels?
- How do we reach a single DC charge standard?
- How do we maximize off-peak charging?
- How do we insure interoperability among chargers?
Home charging trends

• 60 – 80% of charging occurs at home
• Level 1 may be sufficient for many drivers (esp. PHEVs)
• Level 2 costs coming down
• Apartments present unique challenge
Workplace charging trends

• Second most important location after home
• Extends electric range of PEVs
• “Second showroom” for potential PEV buyers
• Could be combination of Level 1 and 2 (lower cost)
Public charging – Existing plans in California

<table>
<thead>
<tr>
<th></th>
<th>Installed</th>
<th>Planned *</th>
<th>NRG Settlement w/ PUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>~ 3,675</td>
<td>~ 175</td>
<td></td>
</tr>
<tr>
<td>Commercial **</td>
<td>~ 1,525</td>
<td>~ 1,970</td>
<td>10,000</td>
</tr>
<tr>
<td>DC Fast Charging</td>
<td>5</td>
<td>65</td>
<td>200</td>
</tr>
</tbody>
</table>

* Planned stations to be finished in next 1-2 years (NRG settlement over 4 yrs)
** Commercial includes: workplace, public, industrial
Public charging - Future

Scenario: 1 million PEVs by 2020 in CA

• EPRI analysis: “Supporting Infrastructure”
 • 33,500 public (~3% ratio to cars)
 • 48,000 workplace (~5% ratio)

• UCD analysis: “Increases electric VMT by”
 • Workplace charging: 7%
 • Public Level 2: 4%
 • DC Fast Charging: 15%
Profile of charging infrastructure industry

- Partnerships emerging with retail outlets
- Network services to play larger role in business plans
- IT driver services emerging – “Maps and Apps”
- Established companies competing with start-ups
Government’s role in charging infrastructure

• Establishing rules for use of electricity as a fuel

• Charging infrastructure financial incentives

• Local government planning

• Governor’s ZEV Executive Order
Electric fuel is plentiful, affordable, and available everywhere, but...

Large uncertainties exist about ideal charging infrastructure design
Contact Information

Diane Wittenberg
Executive Director
PEV Collaborative

dwittenberg@pevcollaborative.org
www.PEVCollaborative.org
FCEVs and Hydrogen in California

Preparing for market launch

Catherine Dunwoody
September 2012
A fuel cell vehicle is electric!

- 250-400 mile range
- Zero-tailpipe emissions
- Minutes to fill the tank
- Passenger & cargo capacity
Ready for commercial launch

- Fuel cell system costs <$50/kW (2011); reduced 30% from 2008
- 2,500-hour real-world durability (75,000 miles); 5,000-hours on single cell (lab)
- Validated driving range of 250 to 400+ miles

Source: US DOE H2 and Fuel Cell Program Plan, April 2012; www.eere.doe.gov/hydrogenandfuelcells
✓ Projected H_2 costs reduced to $\$3.00/kg—competitive with gasoline
✓ 59% efficiency
✓ >2x fuel economy of gasoline internal combustion engines

Source: US DOE H2 and Fuel Cell Program Plan, April 2012; www.eere.doe.gov/hydrogenandfuelcells

Figure 2.4. Hydrogen Production and Delivery Cost Status. Significant progress has already been made in several hydrogen production pathways. The Hydrogen Threshold Cost represents the cost at which hydrogen fuel cell electric vehicles are projected to become competitive on a cost-per-mile basis with competing vehicles (gasoline hybrid-electric vehicles) in 2020. Notes: (i) Costs shown include all delivery and dispensing costs, but do not include taxes.
Reducing GHGs

FCEVs are one of the lowest GHG options

Well-to-Wheels Greenhouse Gas Emissions

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>GHG Emissions (Grams CO₂-equivalent per mile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline (Today's Vehicle)</td>
<td>450</td>
</tr>
<tr>
<td>Gasoline</td>
<td>340</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>270</td>
</tr>
<tr>
<td>Gasoline</td>
<td>235</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>185</td>
</tr>
<tr>
<td>Diesel</td>
<td>220</td>
</tr>
<tr>
<td>Corn Ethanol (E85)</td>
<td>180</td>
</tr>
<tr>
<td>Cellulosic Ethanol (E85)</td>
<td>90</td>
</tr>
<tr>
<td>Gasoline & U.S. Grid Mix</td>
<td>230</td>
</tr>
<tr>
<td>Gasoline & Ultra-Low-Carbon Renewable</td>
<td>195</td>
</tr>
<tr>
<td>Cellulosic Ethanol (E85) & U.S. Grid Mix</td>
<td>105</td>
</tr>
<tr>
<td>Gasoline & Ultra-Low-Carbon Renewable</td>
<td>70</td>
</tr>
<tr>
<td>Gasoline & U.S. Grid Mix</td>
<td>270</td>
</tr>
<tr>
<td>Gasoline & Ultra-Low-Carbon Renewable</td>
<td>155</td>
</tr>
<tr>
<td>Cellulosic Ethanol (E85) & U.S. Grid Mix</td>
<td>180</td>
</tr>
<tr>
<td>Cellulosic Ethanol (E85) & Ultra-Low-Carbon Renewable</td>
<td>63</td>
</tr>
<tr>
<td>U.S. Grid Mix</td>
<td>230</td>
</tr>
<tr>
<td>Ultra-Low-Carbon Renewable</td>
<td>0</td>
</tr>
<tr>
<td>H₂ - Distributed Natural Gas</td>
<td>200</td>
</tr>
<tr>
<td>H₂ - Coal Gasification w/ Sequestration</td>
<td>95</td>
</tr>
<tr>
<td>H₂ - Biomass Gasification</td>
<td>57</td>
</tr>
<tr>
<td>H₂ - Nuclear High-T Electrolysis or Ultra-Low-Carbon Renewable</td>
<td>42</td>
</tr>
</tbody>
</table>

Figure 1.8a. Well-to-Wheels Analysis of Greenhouse Gas Emissions.
Substantial reductions in greenhouse gas emissions are possible through the use of a variety of advanced transportation technologies and fuels, including fuel cell electric vehicles using hydrogen from a variety of sources. Notes: (1) analysis based on a mid-sized car; (2) assumes the state-of-the-art technologies expected in 2035–2045; (3) ultra-low-carbon renewable electricity includes wind, solar, etc.; (4) the life-cycle effects of vehicle manufacturing and infrastructure construction/decommissioning are not accounted for.
FCEV and H₂ progress

- Passenger vehicles leased to customers
- Buses in revenue service
- Hydrogen stations open and more coming
- California is first US market
Projected FCEVs in CA

For competitive reasons, detailed volume assessments have not been provided during 2015-2017.

CaFCP survey of automakers

<table>
<thead>
<tr>
<th></th>
<th>Hundreds</th>
<th>Thousands</th>
<th>Tens of thousands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Through 2013</td>
<td></td>
<td>2014</td>
<td>2015-2017</td>
</tr>
<tr>
<td>Total Passenger</td>
<td>430</td>
<td>1,400</td>
<td>53,000</td>
</tr>
<tr>
<td>Vehicles</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Public H_2 stations in CA today

- Emeryville
- Burbank
- Torrance
- Newport Beach
- Irvine
- Fountain Valley
- West LA
- Thousand Palms
H₂ stations coming by 2013

- Beverly Hills
- Diamond Bar (upgrade)
- Harbor City
- Hawthorne
- Hermosa Beach
- Irvine (upgrade)
- Irvine North
- Laguna Nigel
- Los Angeles
- San Francisco
- Santa Monica
- West LA
- West Sacramento
- Westwood
We’ve learned

- Stations must come before vehicles
- People want fuel near home, work and in weekend destinations
- Stations must be customer friendly
- Six minutes is the target maximum travel time
 - For early market clusters
How many stations?

- OEMs identified need for 68 stations by 2016
 - Balances coverage and capacity utilization
 - Supports 20,000 FCEVs

- 45 stations in cluster communities
 - UC Irvine STREET model

- 23 connector and destination stations that seed new clusters
 - Based on travel patterns, OEM marketing information
Building a statewide network

Map of 68 Hydrogen Fueling Stations: Existing, In Development and Needed

Hydrogen Stations
- Existing
- In Development
- Needed

*as suggested by National Fuel Cell Research Center STREET model

Bay Area
Los Angeles Area
Funding goals

- Ensure we can build out the 68 station network
 - 37 stations already in process or expected to be funded
 - 31 more stations needed by January 2016

- Keep all stations operating as vehicle volume grows

- Analysis shows $65M additional incentives needed
68 Hydrogen stations provide...

Coverage
- Fueling opportunities

Confidence
- Automakers build volume
- Customers purchase FCVs

Commercial
- To launch market and build capacity
Implementing the road map

- Develop funds and framework to achieve 68 station network
- Promote hydrogen readiness
 - Communities, businesses, consumers
- Accelerate station implementation
 - Timeliness, performance, path to profitability

These actions will enable CA to meet the Governor’s ZEV EO milestones for 2015
AUTOMOTIVE
- Chrysler
- Daimler
- General Motors
- Honda
- Hyundai
- Nissan
- Toyota
- Volkswagen

TECHNOLOGY
- AFCC

GOVERNMENT
- CA Energy Commission
- CA Air Resources Board
- South Coast AQMD
- US EPA
- US DOE
- US DOT

ASSOCIATE
- AC Transit
- Air Liquide
- Air Products
- Ballard Power Systems
- CDFA
- CEERT
- EIN
- Hydrogenics
- ITS – UC Davis
- Linde
- NFCRC – UC Irvine
- NREL
- Powertech Labs
- Praxair
- Sandia National Labs
- Santa Clara VTA
- SoCal Gas
- SunLine Transit
- UTC Power

California Fuel Cell Partnership
www.cafcp.org
info@cafcp.org
AB 118 Projects Update

Zero Emission Vehicle Infrastructure
September 20, 2012

Pat Perez, Deputy Director
Fuels and Transportation Division
www.energy.ca.gov
Purpose

To transform California's transportation market into a diverse collection of alternative fuels and technologies and reduce California's dependence on petroleum.

“...develop and deploy innovative technologies that transform California’s fuel and vehicle types to help attain the state’s climate change policies.” (Health and Safety Code Section 44272(a))

For the Alternative & Renewable Fuel and Vehicle Technology Program, the Energy Commission will receive $100 million/year for over 7 years.
Investment Plan ZEV Allocations

Infrastructure and Vehicle Deployment

<table>
<thead>
<tr>
<th>ARFVT Program Category</th>
<th>Funding Allocations (Millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FY 08-10</td>
</tr>
<tr>
<td>American Recovery and Reinvestment Act (vehicles and infrastructure)</td>
<td>$17.4</td>
</tr>
<tr>
<td>Electric Vehicle Charging Infrastructure</td>
<td>$3.2</td>
</tr>
<tr>
<td>Hydrogen Fueling Infrastructure</td>
<td>$15.7</td>
</tr>
<tr>
<td>Light Duty Electric Vehicle Deployment</td>
<td>$2.0</td>
</tr>
<tr>
<td>Medium- and Heavy-Duty Vehicle Deployment</td>
<td>$4.0</td>
</tr>
<tr>
<td>Medium- and Heavy-Duty Advanced Vehicle Demonstrations (Electric Drive)</td>
<td>$10.0</td>
</tr>
<tr>
<td>Manufacturing Facilities and Equipment</td>
<td>$19.0</td>
</tr>
<tr>
<td>Plug-in Electric Vehicle Regional Readiness Plans</td>
<td>-</td>
</tr>
<tr>
<td>Totals</td>
<td>$71.3</td>
</tr>
</tbody>
</table>

*Does not include potential fund reductions.

^Category was expanded beyond strictly electric drive technologies.
Hydrogen Infrastructure

$18.7 million awarded for 12 hydrogen stations

- 2 stations with Linde LLC
- 8 stations with Air Products and Chemicals, Inc.
- 1 station with Airport Commission, City and County of San Francisco
- 1 station with AC Transit

11 stations with Linde, Air Products, and AC Transit moving forward.
Hydrogen Infrastructure

Draft Hydrogen solicitation for 2012 is posted at www.energy.ca.gov/altfuels/

- Comments on this draft solicitation were due September 17, 2012 at 3:00 p.m.

- Energy Commission is working to finalize and release a solicitation for up to $29.69 million for approximately 15 to 20 stations.
PEV Infrastructure

Executed Agreements

Total $16 million

<table>
<thead>
<tr>
<th></th>
<th>Installed*</th>
<th>Planned*</th>
<th>Total*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>1,740</td>
<td>176</td>
<td>1,916</td>
</tr>
<tr>
<td>Commercial, Fleet, and Workplace</td>
<td>1,266</td>
<td>1,972</td>
<td>3,238</td>
</tr>
<tr>
<td>Fast Charging</td>
<td>0</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>Totals</td>
<td>3,006</td>
<td>2,186</td>
<td>5,192</td>
</tr>
</tbody>
</table>

* Numbers are for charge points. More than one charge point may be installed at one site.
PEV Infrastructure
Awarded on August 16, 2012

<table>
<thead>
<tr>
<th>Category</th>
<th>Charge Points</th>
<th>Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast Charge</td>
<td>28</td>
<td>$1,400,554</td>
</tr>
<tr>
<td>Residential</td>
<td>806</td>
<td>$2,499,512</td>
</tr>
<tr>
<td>Workplace</td>
<td>118</td>
<td>$420,481</td>
</tr>
<tr>
<td>Fleet</td>
<td>59</td>
<td>$335,921</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,011</td>
<td>$4,656,468</td>
</tr>
</tbody>
</table>
Other Recent ZEV-Related Investments

- PEV Regional Readiness Plans ($2 million)
- Pre-commercial medium- and heavy-duty bus and truck demonstrations ($10.2 million)
 - Battery electric medium-duty truck
 - Electric shuttle bus
 - Battery electric truck
 - Fuel cell bus
 - Battery electric transit buses
 - Electric drayage truck
- Manufacturing ($19.8 million)
 - Electric drive system for trucks
 - Zero-emission motorcycle
 - Light-duty vehicle
 - Lithium-ion battery modules
ZEV-Related Activities Planned for 2012-2013

- Hydrogen infrastructure solicitation.
- Plug-in electric vehicle infrastructure solicitation.
- Regional planning grants.
- Centers for alternative fuels and advanced vehicle technologies.
- Medium- and heavy-duty vehicle technology demonstrations.
Summary and Conclusion

• Roadmaps to making infrastructure:
 – Accessible
 – Affordable
 – Easy to establish
 – Reliable
 – Environmentally beneficial

• ZEVs in the marketplace

• Government role to ensure infrastructure is established until private investment takes over